Red Hat Application Server

JONnAS User Guide

@ redhat



Red Hat Application Server: JOnAS User Guide
Copyright © 1999-2004 by ObjectWeb Consortium

ObjectWeb Consortium

INRIA - ZIRST, 655 avenue de I’Europe
Montbonnot

38334 SAINT-ISMIER Cedex
FRANCE

Additional information copyright © Red Hat, Inc., 2003-2004.

1801 Varsity Drive

Raleigh NC 27606-2072 USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park NC 27709 USA

Manual identifier:
+ PDF: rhel-jonas-EN-3-PDF-RHI (2003-09-24T01:08)
« HTML.: rhel-jonas-EN-3-HTML-RHI (2003-09-24T01:08)

Red Hat is a registered trademark and the Red Hat Shadow Man logo, RPM, and the RPM logo are trademarks of Red Hat, Inc.
JOnAS is copyright © ObjectWeb Consortium.

The JOnAS logo is copyright © Bruno Bellamy.

Tomcat is copyright © The Apache Software Foundation (ASF).

Intel™, Pentium™, Ttanium™, and Celeron™ are registered trademarks of Intel Corporation.

EJB™, J2EE™, JCA™, JCEE™, JDBC™, JDO™, JMS™, RMI™, and Sun™, and Sun Microsystems® are registered
trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

All other trademarks and copyrights referred to are the property of their respective owners.

The GPG fingerprint of the security @redhat.comkey is:

CA 2086 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE



Table of Contents

1. Introductory JOnAS Documentation vii
1. Java Open Application Server (JOnAS): a J2EE Platform .........ccoceccvevereneienccncnnccnecns 1
1.1. Introduction to Red Hat Application Server...... .1

1.2. JONAS Features ........c.ccoccevevvenereneennnnnn .2
1.3. JOnAS Architecture

1.4. JOnAS Development and Deployment Env1r0nment . .. 10
1.5. Clustering and Performance. ............c.cccocoueurueuienininieueueinineereeeisreeseveseeeeeneenas 11
1.6. Future DevelOPIMENL. .........ccvuevueuirieuirieiriiieiiteieeiee ettt st st 13
2. Getting Started with JOnAS
2.1. Running the First EJB AppliCation........c..cccoeecrerirenieineenenieeneeeeeeceeereseere e 15
2.2. More Complex EXAMPIES .........c.ceeerveueueuirinieieieeirieieieieeteeeee e eaeseseeees 16
3. JOnAS Configuration...........cceccuee .21
3.1. JOnAS Configuration Rules........... .21

3.2. Configuring the JOnAS Environment................... .22
3.3. Configuring the Communication Protocol and JNDI... .23
3.4. Configuring Logging System (monolog).............. .24

3.5. Configuring JOnAS Services............ .26
3.6. Configuring the DB Service (hsql) ...
3.7. Configuring JMS Resource Adapters .
4. Configuring JDBC DataSOUICES .........cc.eueueuiirieueueuiinieieteetenieseseetseesese e sesseseseesssaesesesens 51
4.1. Configuring DataSOUICES .....c..covruerreieriiienieereeteeetetestere sttt er e eren s 51
4.2. CMP2.0/JORM
4.3. ConnectionManager Configuration.............coceeeeuereeenrerereniereneeenreresesseeereeeenes 53
4.4. Tracing SQL Requests Through POSPY .........ccccoovvieiiiiininenciirieeceececene 53
5. JOnAS Class Loader Hierarchy ........ccccccoceeeneneruennene. .
5.1. Understanding the Class Loader Hierarchy
5.2. Commons Class Loader................
5.3. Application Class Loader.
5.4. Tools Class Loader........
5.5. Tomcat Class LOAET . .........ccueoiirireriinirieieetcereee ettt
5.6. JONAS Class Loaders .........cccocuiuiininiiiiiiiiiciiiciiccseeee s
5.7. JOnAS Class Loader Hierarchy .
6. JONAS Command REfErence ..........ccoviririirieiirieeiiirieieeeeeieetee e
6.1, JOMAS .ottt ettt bttt st
6.2. jclient..
6.3. newbean
6.4. registry ..
6.5. GenlC....
6.6. JImsServer..
6.7. RAConfig ..

I1. Enterprise Beans Programmer’s Guide

7. Developing Session BEans ...........cccccveeiniiiiniiineneincieeceeieeeeee e
7.1. Introduction to Session Beans.
7.2. The Home INerface ..o
7.3. The Component INErface ............ccecuvueeeeeininicueeninirieece et
7.4. The Enterprise Bean Class
7.5. Tuning the Stateless-Session Bean Pool..........c.ccoceiinininicicinniccnccccne 77

8. Developing Entity BEANS .......ccccevueiriiienieiicieeieeniese sttt et st 79
8.1. Introduction to Entity Beans .
8.2. The Home Interface ............. ...80
8.3. The Component Interface
8.4. The Primary Key Class ..
8.5. The Enterprise Bean Class
8.6. Writing Database Access Operations (Bean-Managed Persmtence) ................... 89



8.7. Configuring Database Access for Container-Managed Persistence..................... 91

8.8. USINg CMP2.0 PErSIStENCE. ....cuveurvenirieieiinieiieieiee sttt ettt ene e sreneeae e
8.9. Standard CMP2.0 Aspects .............

8.10. JOnAS Database Mappers
8.11. JOnAS Database Mapping (Specific Deployment Descrlptor) 97
8.12. Tuning a Container for Entity Bean Optimizations .115

9. Developing Message-Driven Beans...........ccccccccceveivieeicncnne
9.1. Description of a Message-Driven Bean
9.2. Developing a Message-Driven Bean....
9.3. Administration Aspects..................
9.4. Running a Message-Driven Bean ..
9.5. Transactional ASPECLS .......c.c.ccerirueueuiuierieieieiiiiereseee s teiereae st 124
9.6. Message-Driven Beans EXample .........ccccovevieiniciniincnieiniciniciecieccenienen
9.7. Tuning the Message-Driven Bean Pool .

10. Defining the Deployment DESCIIPLOT .........ccveeruereuiierireerinieinierieetrieteiee et
10.1. Principles......ccocecevieueuercncnennuennnne.
10.2. Example of Session Descriptors .. .
10.3. Example of Container-managed Persistence Entity Descrlptors (CMP 1. 1) .. 131

11. Transactional Behavior of EJB Applications.
11.1. Declarative Transaction Management.

11.2. Bean-managed TIansactions ............c.ccccueurueueuerenereeueueeeereeeeesemseseeseseeseenenenene 136
11.3. Distributed Transaction Management..........c.ceccovecereeeerenenreneereeereeeeneennens 137
12. Enterprise Bean Environment

12.1. INEOAUCHON. ...ttt ettt ettt e et te e ersesseaesaesbeseeneensensansessenseens
12.2. Environment ENtHES ......cc.ecvevireriieieienesieeeirieeeseeieie ettt s eens
12.3. Resource References....................

12.4. Resource Environment References ..........cceoeverieeinireenieiinenenceieiee e 142
12.5. EJB REfEIENCES ......vevieuienieeiiiecieeteetteiete ettt st sae et eesa s sne e eneens 142

13. Security Management ..
13.1. Introduction
13.2. Declarative Security Management..
13.3. Programmatic Security Management.

14. EJB Packaging .........cccoceeevevvecnieccnencnenennes
14.1. Enterprise Bean Principles...........
15. Application Deployment and Installation GUIde ..........c.coeeveirerirenecneneneneeeneennene
15.1. Deployment and Installation Process Principles..... .
15.2. Example of Deploying and Installing an EJB Using an EJB-JAR File ........... 151
15.3. Deploying and Installing a Web Application...........c.coceuceereeniecirinenieccnnns 153
15.4. Deploying and Installing a J2EE Application............cccccceevvivivviiinininiiccnnns 153
I11. Web Application Programmer’s Guide 155
16. Developing Web COMPONENLS. ......c.ceuerieuerreuerreurereriereereeeereeeetessestssestseeaesessessesesseeesaeneenes 157
16.1. Introduction to Web Component Development .. L157
16.2. The JSP Pages.......cccocevevveeneevvnicnieincinecne L 157
16.3. The Servlets .........cccoveiviiiiniiiiiiniciins . 158
16.4. Accessing an EJB from a Servlet or JSP Page. . 160
17. Defining the Web Deployment Descriptor................... .163
17.1. Principles......cocecvvmnueuccncnenunenenne. .163
17.2. Examples of Web Deployment DeSCriptors .........c.ceeeeevererereeereverineerenrenenens 164
1730 TIPS ittt ettt s sttt s 166

18. WAR Packaging . .
18,1 PIINCIPIES. ...ttt et 167




IV. J2EE Client Application Programmer’s Guide 169

19. Launching J2EE Client AppliCAtIONS.........ccueerueteuiieririerinteinienieetrieieeieeeesiee e seevenaenes
19.1. Launching Clients..................... .
19.2. Configuring the Client CONtAINET .........cc.eeeueererererieinreenreneee e eeereereneereneene 171
19.3. EXAMPIES....oiiiiiiiiiiiicicict s 172
20. Defining the Client Deployment Descriptor ..
20.1. PrinCiples. .....cccoeuvueueerieenueueiinieiereenennnne
20.2. Examples of Client Deployment Descriptors ..
20.3. TIPS. vttt
21. Client Packaging
21.1. Principles.

V. J2EE Application Assembler’s Guide

22. Defining the EAR Deployment DesCriptor........c.cocereireieuiierenieinieinecineeieeieeneeneen
22.1. PrNCIPIES. ...eveeveieviieiieiceeieete et .
22.2. Simple Example of Application Deployment Descriptor ...........cocoeevveenuenene 181
22.3. Advanced EXample ..ot 182

VI. Advanced Topics 185
24, JONAS SEIVICES ....oouiiiiiiiiiiiiiiiiiicic st 187
24.1. Introducing a New Service. .187
24.2. Advanced Understanding......... 189
25. JOnAS and the Connector Architecture .193
25.1. Introducing the Connector Architecture ............. .193
25.2. Defining the JOnAS Connector Deployment Descriptor...........c.c.oceveueeenennne. 193
26. IMS USEI’S GUIAE .....oouviuiiiiiiiiiiiicii e

26.1. JMS is Pre-installed and Configured
26.2. Writing JMS Operations Within an Application Component
26.3. Some Programming Rules and Restrictions When Using JMS within EJB .... 201
26.4. JMS Administration

26.5. Running an EJB Performing JMS Operations .............ccceeceevevevenveenuceerennenens 205
26.6. A JMS EJB EXAMPIE .....c.ocoriiiiiiiiiiiciiiiciceceere et 207
27. Ant EJB Tasks: Using EJB-JAR 211
27.1. ejbjar Parameters......... 211
28. Login Modules in a Java CHent .........ccccceeeeveieeneineenciereeceenecenenns 215

28.1. Configuring an Environment to Use Login Modules with Java
28.2. Example of a Client
29. Web Services With JONAS .....c.ccoiiiiiiiiiiiiicce ettt
29.1. WED SEIVICES.....oviviuiiiiiiiiiiiiiciccc s
29.2. Exposing a J2EE Component as a Web Service . .
29.3. The Web Services CHENL.........ccccvviriiiiiiiiiiiiiiiiic e
29,4, WSGM...ccviitiiietet ettt ettt ettt st sae bttt et ettt ebe s b b et
29.5. LIMILAtIONS ...cucvviiiiiieiiiiicii e

VII. How-to Documents

30. JOnAS Versions Migration GUIAE .........c..ccceueveruenirenieinienineneeenteeeecesteneee v seeseesenene
30.1. JOnAS 3.3.x to Red Hat Application Server 1.0

31. How to Install a jUDDI Server on JOnAS...................
31.1. UDDI Server .....c..coocecevveenecnenne
31.2. What is jUDDI?
31.3. Where Can I Find the Latest Version?
31.4. Installation Steps........c.ccceeveueuenene .
315, LANKS oottt

32. Clustering with JOnAS




Index

33.

34.

35.

36.

32.1. ClUStEr ATCRITECIUTE ......eeveeviteeeeereetieieieeteereeeee e et esesteeteeseesaesaessesaensesseeneeneans 235

32.2. Load Balancing at the Web Level with mod_jK........ccccccoeeveiiinnncnncnnenene 236
32.3. Session Replication at the Web Level...........ccooeecinnieiincnnncicneeecne 239
32.4. Load Balancing at the EJB Level.... .241
32.5. Preview of a Coming Version .. .243

32.6. Used Symbols
32.7. References.........
Distributed Message Beans in JOnAS 4.1 ..
33.1. Scenario and General Architecture .
33.2. Common Configuration ............... .245
33.3. Specific Configuration ...
33.4. The BEANS. ....ccueoeeeieieeietiieieiet ettt ettt st s es 247
How to use AXis in JONAS ...
34.1. Unique Axis Webapp .. .
34.2. Embedded AXiS WEDAPP ......coeuvrueirenieiinieinieiecriee ettt sttt 249
34.3. AXIS TESES ...ttt et 250
34.4. Axis Tools .........
Using WebSphere MQ JMS
35.1. Architectural Rules ..................
35.2. Setting the JOnAS Environment..
35.3. Configuring WebSphere MQ ...
35.4. Starting the APPLCALION ........c.c.ciirieiieiiiicicicecr et
35.5. LAMItAtIONS ...cucvviiiieiiiiiicicc s
‘Web Service Interoperability between JOnAS and BEA WebLogic .. .
30, 1. LADTALIES ..cveveeveeteteeetetee ettt bttt st st ee 257
36.2. Accessing a JOnAS Web Service from a WebLogic Server’s EJB.................. 257
36.3. Accessing a WebLogic Web Service from a JOnAS EJB

37. RMI-IIOP Interoperability between JOnAS and BEA WebLogic
37.1. Accessing a JOnAS EJB from a WebLogic Server’s EJB using RMI-IIOP.... 263
37.2. Access a WebLogic Server’s EJB from a JOnAS EJB using RMI-IIOP......... 263

38. Interoperability between JOnAS and CORBA ..........ccccccvimiiiiininnecinneceene .265
38.1. Accessing an EJB Deployed on a JOnAS Server by a CORBA Client .265
38.2. Accessing a CORBA Service by an EJB Deployed on JOnAS Server. .267

39. How to Migrate the New World Cruises Application to JOnAS ..........ccccccceeee .269
39.1. JONAS CONfIGUIALION. ......cuiiiieiiiirieeieieiit et erei et aaenene 269
39.2. SUN WED SEIVICE ...cuooviiiiiiiiiiiiiiiiiiciiicicc e
39.3. JOnAS Web Service .

40. Configuring JDBC Resource AdapLers .........coueuevveerueriruerierenieineirieieieseeeesieseseeneesenaenes 275
40.1. Configuring Resource Adapters...........cccceeuvurueueuererieieueuemnieeereeessieeneseseenenes 275
40.2. Using CMP2.0/JORM.................. 277
40.3. ConnectionManager Configuration.... .278
40.4. Tracing SQL Requests through P6Spy ......... 278
40.5. Migration from dbm Service to the JDBC RA .280

41. Configuring Resource Adapters...........cccccevueveuecnnnunnee .281

41.1. Principles..............
41.2. Description and EXamples ...........ccoueueeeeininieieinninieiceeeeseeese e 281




l. Introductory JOnAS Documentation

The chapters in this section contain introductory information for all JOnAS users.

Table of Contents
1. Java Open Application Server (JOnAS): a J2EE Platform

2. Getting Started with JOnAS

3. JOnAS Configuration

4. Configuring JDBC DataSources

5. JOnAS Class Loader Hierarchy
6. JOnAS Command Reference

15
21
51
55
59






E) redhat Chapter 1.

Java Open Application Server (JOnAS): a J2EE
Platform

This chapter provides an overview of Red Hat Application Server and the JOnAS J2EE platform.

1.1. Introduction to Red Hat Application Server

Red Hat Application Server is a middleware platform—it is layered between the operating system and
applications. This middleware links systems and resources that are scattered across the network.

Red Hat Application Server comprises a runtime system and associated development libraries for cre-
ating and deploying Java-based Web applications with dynamic content (for example, dynamic Web
sites, portal servers, and content management systems). These applications might retrieve, display, or
update data in database management systems such as PostgreSQL or Oracle, or they might communi-
cate with standard application software, such as ERP systems, or with proprietary legacy applications.

Red Hat Application Server is a robust platform for the development and deployment of Web applica-
tions written in Java and built with JSP, servlet, and Enterprise JavaBeans (EJB) technologies. It has
been built to standard protocols and APIs that have emerged from Java, J2EE, Web Services, SOAP
(Single Object Access Protocol), XML (Extensible Markup Language), and CORBA (Common Ob-
ject Request Broker Architecture) standards groups. Developers build their applications using these
standards, while Red Hat’s middleware infrastructure ensures compatibility with the guidelines set
forth by the J2EE specifications.

1.1.1. J2EE

The Sun J2EE specification (http://java.sun.com/j2ee/), together with related specifications such as
EJB (http://java.sun.com/products/ejb/) and JMS (http://java.sun.com/products/jms/), define an archi-
tecture and interfaces for developing and deploying distributed Internet Java server applications based
on a multi-tier architecture. This specification facilitates and standardizes the development, deploy-
ment, and assembling of application components that will be deployable on J2EE platforms. These
applications are typically web-based, transactional, database-oriented, multi-user, secure, scalable,
and portable.

More precisely, the Sun J2EE specification describes two kinds of information:

+ The first is the runtime environment, called a J2EE server, that provides the execution environment
and the required system services, such as the transaction service, the persistence service, the Java
Message Service (JMS), and the security service.

+ The second is programmer and user information that explains how an application component should
be developed, deployed, and used.

Not only will an application component be independent of the platform and operating system (because
it is written in Java), it will also be independent of the J2EE platform.

A typical J2EE application is composed of:

+ Presentation components, also called web components, that define the application
Web interface. These are servlets (http:/java.sun.com/products/servlet/) and JSPs
(http://java.sun.com/products/jsp/).

+ Enterprise components, the Enterprise JavaBeans (EJB), that define the application business logic
and application data.



2 Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform

The J2EE server provides containers for hosting web and enterprise components. The container pro-
vides the component with life-cycle management and interfaces the components with the services
provided by the J2EE server:

+ The web container handles servlet and JSP components.
+ The EJB container handles the Enterprise JavaBeans components.

+ A J2EE server can also provide an environment for deploying Java clients (accessing EJBs); this is
called a client container.

JOnss J2EE Application Server

WEB Container EJB Container

j:;\;leﬁ EJBs @ e

o - .

HTTP Server

2w Ak
c|lz(B|8]= g
T 111

Figure 1-1. J2EE Architecture

1.2. JONnAS Features

JOnAS is a pure Java, open-source, application server that conforms to the J2EE specification. Its high
degree of modularity enables it to be used as:

» A J2EE server, for deploying and running EAR applications (that is, applications composed of both
web and EJB components)

+ An EJB container, for deploying and running EJB components (for example, for applications with-
out web interfaces or when using JSP/servlet engines that are not integrated as a JOnAS J2EE
container)

+ A Web container, for deploying and running JSPs and servlets (for example, for applications without
EJB components).

1.2.1. System Requirements

JOnAS is available for JDK 1.4. It has been used on many operating systems (Linux, AIX, Windows,
Solaris, HP-UX, etc.) and with different databases (Oracle, PostgreSQL, MySQL, SQL server, Access,
DB2, Versant, Informix, Interbase, etc.).



Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform 3

1.2.2. Java Standard Conformance

JOnAS is an implementation of J2EE 1.4. It currently conforms to EJB 2.1. Its current integration of
Tomcat as a Web container ensures conformity to Servlet 2.4 and JSP 2.0 specifications. The JOnAS
server relies on or implements the following Java APIs: JCA 1.5, JDBC 3.0, JTA 1.0.1, JMS 1.1, IMX
1.2, INDI 1.2.1, JAAS 1.0, JACC 1.0, and JavaMail 1.3.

1.2.3. Key Features

In addition to the implementation of all J2EE-related standards, JOnAS provides the following impor-
tant advanced features:

Management: JOnAS server management uses JMX and provides a servlet-based management con-
sole.

Services: JOnAS’s service-based architecture provides for high modularity and configurability of
the server. It allows the developer to apply a component-model approach at the middleware level,
and makes the integration of new modules easy (for example, for open source contributors). It also
provides a way to start only the services needed by a particular application, thus saving valuable
system resources. You can manage JOnAS services through JMX.

Scalability: JOnAS integrates several optimization mechanisms for increasing server scalability.
This includes a pool of stateless session beans, a pool of message-driven beans, a pool of threads, a
cache of entity beans, activation/passivation of entity beans, a pool of connections (for JDBC and
JMS), and storage access optimizations (shared flag, isModified).

Clustering: JOnAS clustering solutions, both at the WEB and EJB levels, provide load balancing,
high availability, and failover support.

Distribution: JOnAS works with several distributed processing environments, due to the
integration of ObjectWeb’s CAROL (Common Architecture for RMI ObjectWeb Layer) project
(http://www.objectweb.org/carol/index.html), which enables simultaneous support of several
communication protocols:

« CMI (Cluster Method Invocation), the “Cluster aware” distribution protocol of JOnAS

« RMI (Java Remote Method Invocation) using the Sun proprietary protocol JRMP (Java Remote
Method Protocol)

« RMI on IIOP (Java Remote Method Invocation over Internet Inter-Orb Protocol).

Support of "Web Services": Due to the integration of AXIS, JOnAS allows J2EE components to
access "Web Services" (that is, to be "Web Services" clients), and allows J2EE components to be
deployed as "Web Services" endpoints. Standard Web Services clients and endpoints deployment,
as specified in J2EE 1.4, is supported.

Support of JDO: By integrating the ObjectWeb implementation of JDO (Java Data Objects)
(http://java.sun.com/products/jdo), SPEEDO (http://speedo.objectweb.org), and its associated
J2EE CA Resource Adapter, JOnAS provides the capability of using JDO within J2EE
components.

Three critical J2EE aspects were implemented early on in the JOnAS server:

J2EE CA: JOnAS applications can easily access Enterprise Information Systems (EIS). By sup-
porting the Java Connector Architecture, JOnAS allows deployment of any J2EE CA-compliant
Resource Adapter (connector), which makes the corresponding EIS available from the J2EE ap-
plication components. Moreover, resource adapters will become the standard way to plug JDBC
drivers (and JMS implementation, with J2EE 1.4) into J2EE platforms. A JDBC Resource Adapter



4 Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform

available with JOnAS provides JDBC PreparedStatement pooling and can be used in place of the
JOnAS DBM service. A JORAM JMS Resource adapter is also available.

JMS (Java Messaging Service): JMS implementations can be easily plugged into JOnAS. They run
as aJOnAS service either in the same JVM (Java Virtual Machine) or in a separate JVM, and JOnAS
provides administration facilities that hide the JMS proprietary administration APIs. Currently,
three JMS implementations can be used: the JORAM open-source JMS implementation from Ob-
jectWeb (http://joram.objectweb.org/), SwiftMQ (http://www.swiftmq.com/), and Websphere MQ.
J2EE CA Resource Adapters are also available, providing a more standard way to plug JORAM or
SwiftMQ into JOnAS.

JTA (Java Transaction API): The JOnAS platform supports distributed transactions that involve
multiple components and transactional resources. The JTA transactions support is provided by a
Transaction Monitor that has been developed on an implementation of the CORBA Object Trans-
action Service (OTS).

1.3. JOnAS Architecture

JOnAS is designed with services in mind. A service typically provides system resources to containers.
Most of the components of the JOnAS application server are pre-defined JOnAS services. However,
it is possible and easy for an advanced JOnAS user to define a service and to integrate it into JOnAS.
Because J2EE applications do not necessarily need all services, it is possible to define, at JOnAS
server configuration time, the set of services that are to be launched at server start.

The JOnAS architecture is illustrated in the following figure, showing WEB and EJB containers rely-
ing on JOnAS services (all services are present in this figure). Two thin clients are also shown in this
figure, one of which is the JOnAS administration console (called JonasAdmin).

HTML Clients

RMI Clients
o
=
=
= ot
EJB Container WEB Container /
JOnAS — == W
J2EE 5 x s g
Server g |o 5 | E i gl |,
o =] sl |7l |&] |2
gl |2 5 1Z] I 2 8] 5] || |8 DB
el 1=l (5] 12| B (5| (5] 18] |2 (8] |
S| 2| 2] |5 |5 = (2] |12] (=] |5] |1Z] |8
- LY = I}
Services f
JORAM|  [JOTM] | [Tomeat -m JORMY
MEDOR lDD[I
CAROL/\Jonathan °
cos

Figure 1-2. J2EE Architecture



Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform 5

1.3.1. Communication and Naming Service

The Communication and Naming Service (also called Registry) is used for launching the RMI reg-
istry, the CosNaming, and/or the CMI registry, depending on the JOnAS configuration (that is, the
CAROL configuration, which specifies which communication protocols are to be used). There are
different registry launching modes, such as using the same JVM or not, and launching automatically
if not already running. CAROL enables multi-protocol runtime support and deployment, which avoids
having to redeploy components when changing the communication protocol.

The Communication and Naming Service provides the JNDI (Java Naming and Directory Interface)
API to application components and to other services in order to bind and look up remote objects
(for example, EJB Homes) and resource references (JDBC DataSource, Mail, and JMS connection
factories, etc.).

1.3.2. EJB Container Service

The EJB Container Service is in charge of loading the EJB components and their containers. EJB
containers consist of a set of Java classes that implement the EJB specification and a set of interposi-
tion classes that interface the EJB components with the services provided by the JOnAS application
server. Interposition classes are specific to each EJB component and are generated by the deployment
tool called GenIC.

JOnAS configuration provides a means for specifying that this service be launched during JOnAS
initialization.

Enterprise JavaBeans (EJB) are software components that implement the business logic of an appli-
cation (while the servlets and JSPs implement the presentation). There are three types of Enterprise
JavaBeans:

+ Session beans are objects associated with only one client; they are short-lived (one method call or a
client session) and represent the current state of the client session. They can be transaction-aware,
stateful, or stateless.

+ Entity beans are objects that represent data in a database. They can be shared by several clients
and are identified by means of a primary key. The EJB container is responsible for managing the
persistence of such objects. The persistence management of such an object is entirely transparent
to the client that will use it, and may or may not be transparent to the bean provider who develops
it. This depends on if it is one of the following:

« For an Enterprise Bean with Container-Managed Persistence, the bean provider does not de-
velop any data access code; persistence management is delegated to the container. The mapping
between the bean and the persistent storage is provided in the deployment descriptor, in an ap-
plication server-specific way.

« For an Enterprise Bean with Bean-Managed Persistence, the bean provider writes the database
access operations in the methods of the Enterprise Bean that are specified for data creation, load,
store, retrieval, and remove operations.

+ Message-driven Beans are objects that can be considered as message listeners. They execute
on receipt of a JMS Java Message Service message; they are transaction-aware and
stateless. They implement some type of asynchronous EJB method invocation. (Refer to
http://java.sun.com/products/jms/.)

JOnAS configuration provides a means for specifying a set of EJB-JAR files to be loaded. EJB-JAR
files can also be deployed at server runtime using the JOnAS administration tools.

For implementing Container-Managed Persistence of EJB 2.0 and EJB 2.1 (CMP2), JOnAS relies
on the ObjectWeb JORM (Java Object Repository Mapping http://jorm.objectweb.org/) and MEDOR
(Middleware Enabling Distributed Object Requests http://medor.objectweb.org/) frameworks. JORM



6 Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform

supports complex mappings of EJBs to database tables, as well as several types of persistency support
(relational databases, object databases, LDAP repositories, etc.).

JOnAS also implements the Timer Service features as specified in EJB 2.1.

1.3.3. WEB Container Service

The WEB Container Service is in charge of running a servlet/JSP engine in the JVM of the JOnAS
server and of loading web applications (WAR files) within this engine. Currently, this service can be
configured to use Tomcat (see http://jakarta.apache.org/tomcat/). Servlet/JSP engines are integrated
within JOnAS as web containers, that is, containers that provide the web components with access to
the system resources (of the application server) and to EJB components, in a J2EE-compliant way.

JOnAS configuration provides a means for specifying that the WEB Container Service be launched
during JOnAS initialization. Additionally, JOnAS configuration provides a means for specifying a set
of WAR files to be loaded. Such WAR files can also be deployed at server runtime using the JOnAS
administration tools. User management for Tomcat and JOnAS has been unified. The class-loading
delegation policy (priority to the Webapp classloader or to the parent classloader) can be configured.

Servlet (http://java.sun.com/products/servlet/) and JSP (http://java.sun.com/products/jsp/) are tech-
nologies for developing dynamic web pages. The servlet approach allows the development of Java
classes (HTTP servlets) that generate HTML pages and that can be invoked through HTTP requests.
Typically, servlets access the information system using Java APIs (such as JDBC or the APIs of EJB
components) in order to build the content of the HTML page they will generate in response to the
HTTP request. The JSP technology is a complement of the servlet technology. A JSP is an HTML
page containing Java code within particular XML-like tags; this Java code is in charge of generating
the dynamic content of the HTML page.

Servlets and JSPs are considered as J2EE application components, responsible for the application
presentation logic. Such application components can access resources provided by the J2EE server
(such as JDBC datasources, JMS connection factories, EJBs, mail factories). For EJB components,
the actual assignment of these resources is performed at component deployment time and is specified
in the deployment descriptor of each component, because the component code uses logical resource
names.

1.3.4. EAR Service

The EAR Service is used for deploying complete J2EE applications, that is, applications packaged in
EAR files, which themselves contain EJB-JAR files and/or WAR files. This service handles the EAR
files and delegates the deployment of the WAR files to the WEB Container service and the EJB-JAR
files to the EJB Container service. It handles creating the appropriate class loaders, as defined in the
J2EE specification, in order for the J2EE application to execute properly.

For deploying J2EE applications, JOnAS must be configured to launch the EAR service and to specify
the set of EAR files to be loaded. EAR files can also be deployed at server runtime using the JOnAS
administration tools.

1.3.5. Transaction Service

The Transaction Service encapsulates a Java Transaction Monitor called JOTM, a project from Ob-
jectWeb (http://jotm.objectweb.org). It is a mandatory service that handles distributed transactions. It
provides transaction management for EJB components as defined in their deployment descriptors. It
handles two-phase commit protocol against any number of Resource Managers (XA Resources). For
J2EE, a transactional resource can be a JDBC connection, a JMS session, or a J2EE CA Resource
Adapter connection. The transactional context is implicitly propagated with the distributed requests.
The Transaction Monitor can be distributed across one or more JOnAS servers; thus a transaction



Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform 7

may involve several components located on different JOnAS servers. This service implements the
JTA 1.0.1 specification, thus allowing transactions from application components or from application
clients to be explicitly started and terminated. Starting transactions from application components is
allowed only from Web components, session beans, or message-driven beans. Restricting transactions
to only these two types of beans is called Bean-managed transaction demarcation.

One of the main advantages of the EJB support for transactions is its declarative aspect, which means
that transaction control is no longer hard-coded in the server application, but is configured at deploy-
ment time. This is known as container-managed transaction demarcation. With container-managed
transaction demarcation, the transactional behavior of an Enterprise Bean is defined at configuration
time and is part of the deployment descriptor of the bean. The EJB container is responsible for pro-
viding the transaction demarcation for the enterprise beans according to the value of transactional
attributes associated with EJB methods. These attributes can be one of the following:

+ NotSupported: If the method is called within a transaction, this transaction is suspended during
the time of the method execution.

+ Required: If the method is called within a transaction, the method is executed in the scope of this
transaction; otherwise, a new transaction is started for the execution of the method and committed
before the method result is sent to the caller.

+ RequiresNew: The method is always executed within the scope of a new transaction. The new
transaction is started for the execution of the method and committed before the method result is
sent to the caller. If the method is called within a transaction, this transaction is suspended before
the new one is started, and resumed when the new transaction has completed.

+ Mandatory: The method should always be called within the scope of a transaction; otherwise, the
container throws the TransactionRequired exception.

+ Supports: The method is invoked within the caller transaction scope. If the caller does not have
an associated transaction, the method is invoked without a transaction scope.

+ Never: With this attribute the client is required to call the method without a transaction context,
otherwise the container throws the java.rmi.RemoteException exception.

The ObjectWeb project JOTM (Java Open Transaction Manager), is actually based on the transaction
service of earlier JOnAS versions. It will be enhanced to provide advanced transaction features, such
as nested transactions and “Web Services” transactions (an implementation of DBTP is available).

1.3.6. Database Service

This service is responsible for handling Datasource objects. A Datasource is a standard JDBC admin-
istrative object for handling connections to a database. The database service creates and loads such
datasources on the JOnAS server. DataSources to be created and deployed can be specified at JOnAS
configuration time, or they can be created and deployed at server runtime using the JOnAS admin-
istration tools. The database service is also responsible for connection pooling; it manages a pool of
database connections to be used by the application components, thus avoiding many physical con-
nection creations, which are time-consuming operations. The database service can now be replaced
by the JDBC Resource Adapter, to be deployed by the J2EE CA resource service, which additionally
provides JDBC PreparedStatement pooling.

1.3.7. Security Service

The Security Service implements the authorization mechanisms for accessing J2EE components, as
specified in the J2EE specification.



8 Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform

+ EJB security is based on the concept of roles. The methods can be accessed by a given set of roles.
In order to access the methods, you must be in at least one role of this set.

The mapping between roles and methods (permissions) is done in the deployment descriptor using
the security-role and method-permission elements. Programmatic security management
is also possible using two methods of the EJBContext interface in order to enforce or comple-
ment security check in the bean code: getCallerPrincipal () and isCallerInRole (String
roleName) . The role names used in the EJB code (in the isCallerInRole method) are, in fact,
references to actual security roles, which makes the EJB code independent of the security configu-
ration described in the deployment descriptor. The programmer makes these role references avail-
able to the bean deployer or application assembler by way of the security-role-ref elements
included in the session or entity elements of the deployment descriptor.

+ Web security uses the same mechanisms; however, permissions are defined for URL patterns instead
of EJB methods. Therefore, the security configuration is described in the Web deployment descrip-
tor. Programmatically, the caller role is accessible within a web component via the i sUserInRole

(String roleName) method.

In JOnAS, the mapping between roles and user identification is done in the user identification repos-
itory. When using Tomcat for user authentication, this user identification repository can be stored
either in files, in a JNDI repository (such as LDAP), or in a relational database. This is achieved
through a JOnAS implementation of the Realm for each Web container and through the JAAS (Java
Authentication and Authorization Service) login modules for Java clients.

Realms use authentication resources provided by JOnAS, which enable you to rely on files, LDAP,
or JDBC. These realms are in charge of propagating the security context to the EJB container dur-
ing EJB calls. JAAS login modules are provided for user authentication of Web Container and Java
clients. Certificate-based authentication is also available, with the CRLLoginModule login module for
certificate revocation.

JOnAS also implements the Java Authorization Contract for Containers (JACC 1.0) specification,
allowing you to manage authorizations as Java security permissions and to plug in any security policy
provider.

1.3.8. Messaging Service

Asynchronous EJB-method invocation is possible on Message-driven Bean components. A
Message-driven Bean is an EJB component that can be considered to be a JMS (Java Message
Service) MessageListener; that is, a service that processes JMS messages asynchronously (see
http://java.sun.com/products/jms). It is associated with a JMS destination. Its onMessage method is
activated on the reception of messages sent by a client application to this destination. It is also
possible for any EJB component to use the JMS API within the scope of transactions managed by the
application server.

For supporting Message-driven Beans and JMS operations coded within application components, the
JOnAS application server relies on a JMS implementation. JOnAS makes use of a third-party JMS im-
plementation; currently the JORAM open-source software is integrated and delivered with JOnAS, the
SwiftMQ product can also be used, and other JMS provider implementations can easily be integrated
(see http://joram.objectweb.org/ and http://www.swiftmq.com/). JORAM provides several noteworthy
features, particularly:

+ Reliability (with a persistent mode)

» Distribution (transparently to the JMS client, it can run as several servers, thus allowing load bal-
ancing)

+ The choice of TCP or SOAP as the communication protocol for messages.



Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform 9

The JMS service is in charge of launching (or establishing a connection to) the integrated JMS server,
which may or may not run in the same JVM as JOnAS. It also provides connection pooling and thread
pooling (for Message-driven Beans). Through this service, JOnAS provides facilities to create JMS-
administered objects such as the connection factories and the destinations, either at server-launching
time or at runtime using the JOnAS administration tools.

Note that the same function of JMS implementation integration can now be achieved through a Re-
source Adapter, to be deployed by the J2EE CA Resource Service. Such a Resource Adapter, J2EE
CA 1.5, is provided for JORAM.

1.3.9. J2EE CA Resource Service

The J2EE Connector Architecture (J2EE CA) allows the connection of different Enterprise Informa-
tion Systems (EIS) to a J2EE application server. It is based on the Resource Adapter (RA); this is
an architecture component—comparable to a software driver—that connects the EIS, the application
server, and the enterprise application (J2EE components). The RA is generally provided by an EIS
vendor and provides a Java interface (the Common Client Interface or CCI) to the J2EE components
for accessing the EIS (this can also be a specific Java interface). The RA also provides standard in-
terfaces for plugging into the application server, allowing them to collaborate to keep all system-level
mechanisms (transactions, security, and connection management) transparent from the application
components.

J2EE Application

Container-Component contract

OnAS
CClI Client interface

JOnAS
J2EE
Server

System contract Resource

Adapters

Connections
Transactions
Security

EiS-specific interface

LL[ EIS \\}

Figure 1-3. JCA Architecture

The application performs "business logic" operations on the EIS data using the RA client API (CCI),
while transactions, connections (including pooling), and security on the EIS are managed by the ap-
plication server through the RA (system contract).

The JOnAS Resource service is in charge of deploying J2EE CA-compliant Resource Adapters (con-
nectors), packaged as RAR files, on the JOnAS server. RAR files can also be included in EAR files,
in which case the connector will be loaded by the application classloader. Once Resource Adapters
are deployed, a connection factory instance is available in the JNDI namespace to be looked up by
application components.

A J2EE CA 1.0 Resource Adapter for JDBC is available with JOnAS. It can replace the current JOnAS
database service for plugging JDBC drivers and managing connection pools. It also provides JDBC



10 Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform

PreparedStatement pooling.

A J2EE CA 1.5 Resource Adapter for JMS is available with JOnAS. It can replace the current JOnAS
Messaging service for plugging into JORAM.

1.3.10. Management Service

You require the Management service in order to administer a JOnAS server from the JOnAS admin-
istration console. Each server running this service is visible from the administration console.

The Management service is based on JMX (Java Management Extension). Standard MBeans defined
within the JOnAS application server expose the management methods of the instrumented JOnAS
server objects, such as services, containers, and the server itself. These MBeans implement the man-
agement model as specified in the J2EE Management Specification. The Management service runs a
JMX server (currently the MX4J server, but the Sun RI server is also available). The MBeans of the
JOnAS server are registered within this JMX server.

The JOnAS administration console is a Struts-based Web application (servlet/JSP) that accesses the
JMX server to present the managed features within the administration console. Thus, through a simple
Web browser, it is possible to manage one or several JOnAS application servers. The administration
console provides a means for configuring all JOnAS services (and making the configuration persis-
tent) and for deploying any type of application (EJB-JAR, WAR, EAR) and any type of resource
(DataSources, JMS and Mail connection factories, J2EE CA connectors), all without the need to
stop or restart the server. The administration console displays information for monitoring the servers
and applications. This information includes used memory, used threads, number of EJB instances, and
which component currently uses which resources. When Tomcat is used as Web Container, the Tomcat
Management is integrated within the JOnAS console. A Management EJB (MEJB) is also delivered,
providing access to the management features, as specified in the J2EE Management Specification.

1.3.11. Mail Service

A J2EE application component can send e-mail messages using JavaMail (see
http://java.sun.com/products/javamail/). The Mail service of the JOnAS application server provides
the resources necessary for the J2EE application components. The Mail service creates mail factories
and registers these resources in the JNDI namespace in the same way that the database service
or the JMS service creates Datasources or ConnectionFactories and registers these objects
in the JNDI namespace. There are two types of mail factories: javax.mail.Session and
javax.mail.internet.MimePartDataSource.

1.3.12. WebServices Service

This service is implemented on top of AXIS and is used for the deployment of Web Services.

1.4. JOnAS Development and Deployment Environment

The JOnAS development and deployment environment comprises the JOnAS configuration and de-
ployment facilities and the JOnAS development environment.

1.4.1. JOnAS Configuration and Deployment Facilities

Once JOnAS has been installed in a directory referenced by the JONAS_ROOT environment variable,
it is possible to configure servers and to deploy applications into several execution environments.
This is achieved using the JONAS_BASE environment variable. JONAS_ROOT and JONAS_BASE can



Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform 11

be compared to the CATALINA_HOME and CATALINA_BASE variables of Tomcat. While JONAS_ROOT
is dedicated to JOnAS installation, JONAS_BASE is used to specify a particular JOnAS instance con-
figuration. JONAS_BASE designates a directory containing a specific JOnAS configuration, and it iden-
tifies subdirectories containing the EJB-JAR, WAR, EAR, and RAR files that can be loaded in this
application environment. There is an ANT target in the JOnAS build.xml file for creating a new
JONAS_BASE directory structure. Thus, from one JOnAS installation, it is possible to switch from one
application environment to another by just changing the value of the JONAS_BASE variable.

There are two ways to configure a JOnAS application server and load applications: either by using the
administration console or by editing the configuration files. There are also “autoload” directories for
each type of application and resource (EJB-JAR, WAR, EAR, RAR) that allow the JOnAS server to
automatically load the applications located in these directories when starting.

JOnAS provides several facilities for deployment:

+ For writing the deployment descriptors, plugins for Integrated Development Environments (IDE)
provide some generation and editing features (Eclipse and JBuilder plugins are available). The
NewBean JOnAS built-in tool generates template deployment descriptors. The Xdoclet tool also
generates deployment descriptors for JOnAS. The Apollon ObjectWeb project generates Graph-
ical User Interfaces for editing any XML file; it has been used to generate a deployment de-
scriptor editor GUI (see http://debian-sf.objectweb.org/projects/apollon). A deployment tool de-
veloped by the ObjectWeb JOnAS community, earsetup (http://sourceforge.net/projects/earsetup),
will also be available for working with the JSR88-compliant (J2EE 1.4) deployment APIs provided
by the ObjectWeb Ishmael project (see http://sourceforge.net/projects/earsetup/ and http://debian-
sf.objectweb.org/projects/ishmael/ respectively.

+ Some basic tools for the deployment itself are the JOnAS GenIC command line tool and the cor-
responding ANT EJB-JAR task. The IDE plugins integrate the use of these tools for deployment
operations. The main feature of the Ishmael project will be the deployment of applications on the
JOnAS platform.

1.4.2. JOnAS Development Environments

There are many plugins and tools that facilitate the development of J2EE applications to be deployed
on JOnAS. IDE plugins for JBuilder Kelly (http://forge.objectweb.org/projects/kelly/), JOPE
(http://forge.objectweb.org/projects/jope/), and Lomboz (http://lomboz.objectweb.org) provide the
means to develop, deploy, and debug J2EE components on JOnAS. The Xdoclet code generation
engine (http://xdoclet.sourceforge.net/) can generate EJB interfaces and deployment descriptors
(standard and JOnAS specific ones), taking as input the EJB implementation class containing
specific JavaDoc tags. The JOnAS NewBean tool generates templates of interfaces, implementation
class, and deployment descriptors for any kind of EJB. Many development tools may work with
JOnAS; refer to the JOnAS tools page at http://www.objectweb.org/jonas/tools.html for more details.

In addition, JOnAS is delivered with complete J2EE examples, providing a build.xml ANT file with
all the necessary targets for compiling, deploying, and installing J2EE applications.

1.5. Clustering and Performance

Clustering for an application server generally makes use of three features: Load Balancing (LB), High
Availability (HA), and Failover. Such mechanisms can be provided at the Web-container level by
dispatching requests to several Servlet/JSP engine instances, at the EJB-container level by dispatching
EJB requests to several EJB container instances, and at the database level by using several databases.
A replicated JNDI naming is also necessary.

JOnAS provides Load Balancing, High Availability, and Failover at the WEB container level using
the Apache Tomcat mod_jk plugin and an HTTP-in-memory session-replication mechanism based



12 Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform

on JGroups. The plugin dispatches HTTP requests from the Apache web server to Tomcat instances
running as JOnAS web containers. Server fluctuations are automatically taken into account. This plu-
gin supports round-robin and weighted round-robin load-balancing algorithms, with a sticky session
option.

Load balancing and HA are provided at the EJB container level in JOnAS. Operations invoked on
EJB Home interfaces (EJB creation and retrieval) are dispatched on the nodes of the cluster. The
mechanism is based on a clustered-aware replicated JNDI registry using a Clustered remote Method
Invocation protocol (CMI). The stubs contain the knowledge of the cluster and implement the load-
balancing policy, which may be round-robin and weighted round-robin. In the near future, a load-
balancing mechanism based on the nodes load will be available. Failover at the EJB level will be
provided by implementing a stateful Session Bean state replication mechanism.

The JOnAS clustering architecture is illustrated in the following figure.

[
=
JOmAS '
/ Tomeat EJB
Container
1 Ao 1
- = \ - =
JOmAS
Apache Tomcat EJB DB
Container ﬁ
s N\ JL \ T 8/
\ \ JOnAS
Tomcat|—— EIB
) Container

Figure 1-4. Clustered Architecture

Apache is used as the front-end HTTP server; Tomcat is used as the JOnAS web container. The JOnAS
servers share the same database. The mod_jk plug-in provides load balancing/high availability at the
Servlet/JSP level. Failover is provided through the in-memory, session-replication mechanism. Load
balancing/high availability are provided at the EJB level through the CMI protocol associated with the
replicated, clustered-aware JNDI registry. Tomcat may or may not run in the same JVM as the EJB
container. JOnAS provides some documentation for configuring such an architecture.

The use of the C-JDBC ObjectWeb project offers load balancing and high availability at the database
level (see http://www.objectweb.org/c-jdbc/index.html). The use of C-JDBC is transparent to the ap-
plication (in our case, to JOnAS), because it is viewed as a standard JDBC driver. However, this
“driver” implements the cluster mechanisms (reads are load-balanced and writes are broadcasted).
The database is distributed and replicated among several nodes, and C-JDBC load balances the queries
between these nodes. An evaluation of C-JDBC using the TPC-W benchmark on a 6-node cluster has
shown performance scaling linearly up to six nodes.



Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform 13

In addition to clustering solutions, JOnAS provides many intrinsic mechanisms to ensure high scalable
and efficiency:

+ A pool of stateless Session Bean instances
+ A pool of Entity Bean instances, configurable for each Entity Bean within its deployment descriptor

+ Activation/passivation of entity beans (passivation can be controlled through the management con-
sole)

« Pools of connections, for JDBC, JMS, J2EE CA connectors
+ A pool of threads for message-driven beans
+ Session Bean timeout can be specified at deployment

+ A “shared” flag in the specific deployment descriptor of an Entity Bean that indicates whether the
persistent representation of this Entity Bean is shared by several servers/applications, or whether it
is dedicated to the JOnAS server where it is loaded. In the latter case, the optimization performed
by JOnAS consists of not reloading the corresponding data between transactions.

+ The usual EJB 1.1 “isModified” (or “Dirty”’) mechanism is available, for avoiding storage of un-
modified data.

Some benchmarks and JOnAS Use cases have already proven that JOnAS is highly scalable. Re-
fer to the Rubis http://www.cs.rice.edu/CS/Systems/DynaServer/perf_scalability_ejb.pdf results or the
OpenUSS Use case (http://openuss.sourceforge.net/openuss/). Rubis is a benchmark for e-commerce
J2EE applications, which now belongs to the ObjectWeb JMOB (Java Middleware Open Benchmark-
ing) project (http://www.objectweb.org/jmob/index.html). OpenUSS is an operational university por-
tal that has approximately 20,000 users.

1.6. Future Development

As an open source implementation of a J2EE server, JOnAS is constantly evolving to satisfy user
requirements and to follow the related standards. These are the current JOnAS plans:

+ J2EE 1.4 compliance, JOnAS being currently in the process of passing the Sun J2EE Compatibility
Test Suite.

+ JOnAS administration will be enhanced by completing the concept of management domain, and by
introducing cluster management facilities.

Addressing performance issues by developing workbenches and by producing tuning guides.
+ Support of “Web Services” and tools for developing those services.

+ Deployment APIs as specified in JSR88 (J2EE 1.4) will be supported as a result of the Ishmael
project.



14

Chapter 1. Java Open Application Server (JOnAS): a J2EE Platform



s) redhat

Chapter 2.
Getting Started with JOnAS

This tutorial guides you through running a first example EJB. Guidance is also provided for running
a more complex example in which an EJB has access to a database.

You can find additional information about JOnAS configuration in Chapter 3 JOnAS Configuration.

2.1. Running the First EJB Application

2.1.1. JOnAS Examples

There are several examples in the JOnAS distribution under $JONAS_ROOT/examples/src. You
should run the example located in the $JONAS_ROOT/examples/src/sb/ directory first.

In this example, a Java client accesses a stateful Session Bean and calls the buy method of the bean
several times inside the scope of transactions.

2.1.2. Building the sb Example

The easiest way to compile this example is to go to the sb directory $JONAS_ROOT/examples/src/sb/
and use the compile. sh shell script.

2.1.3. Running the sb Example

This a distributed example in which two processes are involved:

« The JOnAS server, in which beans will be loaded
« The Java client that creates instances of beans and calls business methods on it.

To run this example:

1. Run the JOnAS server:
service jonas start

The following message is displayed on the standard output:
The JOnAS Server ’jonas’ version-number is ready

2. Make beans available to clients by loading the jar containing the sb example:
jonas admin -a sb. jar

The following message is displayed on the standard output:
message-header: Op available

3. Run the Java client in another terminal command-line window:
jeclient sb.ClientOp

4. If the following output displays, the first EJB application with JOnAS has run successfully:
Create a bean
Start a first transaction
First request on the new bean
Second request on the bean
Commit the transaction
Start a second transaction



16 Chapter 2. Getting Started with JOnAS

Rollback the transaction
Request outside any transaction
ClientOp OK. Exiting.

5. Before ending this session, be sure to stop the JOnAS server:
service jonas stop

These instructions are also located in the README file in the working directory.

2.1.4. Understanding Why This Works

+ This example demonstrates that the CLASSPATH is correctly set because, when the JOnAS server is
launched, the jonas script calls the JOnAS bootstrap class.

The jclient script is being used to run the client. Note that the bean classes were found in
$JONAS_ROOT/examples/classes. If this had not been the case, it would have been necessary
to call the jclient script with the —cp "$JONAS_ROOT/ejbjars/sb.jar" option.

+ The client has succeeded in contacting the JOnAS server because the client has a distributed refer-
ence that was previously registered in the naming service. To do this, server and client use JNDI
(the Java Naming and Directory Interface). The carol .properties file (Which contains the INDI
configuration) is located in the $JONAS_ROOT/conf directory.

This carol.properties has the JNDI properties set to the default values.

With these default values, the registry runs on localhost on the default port (1099 for
RMI/JRMP).

By default, the registry is launched in the same JVM as the JOnAS Server.

2.2. More Complex Examples

2.2.1. Other JOnAS Examples

The following examples are located under $JONAS_ROOT/examples/src:

+ The eb example ($JONAS_ROOT/examples/src/eb/) uses Entity beans. (See Section 2.2.2 An Ex-
ample With Database Access.)

The two beans share the same interface (Account): one uses bean-managed persistence (explicit
persistence), the other uses container-managed persistence (implicit persistence).

This is a good example for understanding what must be done, or not done, for persistence, based
on the chosen mode of persistence. It provides both a CMP 1.1 and a CMP 2.0 implementation.

+ The Ib example ($JONAS_ROOT/examples/src/Ib/) uses Entity beans with local interfaces.
A Session Bean, Manager, locally manages an Entity Bean, Manac, which represents an account.

This is a good example for understanding what must be done for a local client collocated with an
Entity Bean providing local interfaces.

+ The jms directory ($JONAS_ROOT/examples/src/jms/) contains a stateful Session Bean with
methods performing JMS operations and a pure JMS client message receptor.

A complete description of this example is in Section 26.6 A JMS EJB Example.

+ The mailsb directory ($JONAS_ROOT/examples/src/mailsb/) contains a SessionMailer and
MimePartDSMailer Stateful Session beans with methods providing a way for building and
sending mail.



Chapter 2. Getting Started with JOnAS 17

+ The mdb/samplemdb directory (JONAS_ROOT/examples/src/mdb/samplemdb/) contains a Mes-
sage Driven Bean that listens to a topic and an MdbClient, which is a pure JMS client, that sends
10 messages on the corresponding topic.

This is a very good example for understanding how to write and use message-driven beans.

+ The mdb/sampleappli directory ($JONAS_ROOT/examples/src/mdb/sampleappli/) contains the
following:

- Two Message-Driven beans, one listening to a topic (StockHandlerBean) the other listening
to a queue (OrderBean)

« An Entity Bean with container-managed persistence (StockBean) and a stateless Session Bean
for creating the table used in the database.

SampleAppliClient sends several messages on the topic. Upon receipt of a message, the StockHan-
dlerBean updates the database via the StockBean and sends a message to the queue inside a global
transaction. All of the EJBs are involved in transactions that may commit or rollback.

+ Alarm (http://jonas.objectweb.org/current/examples/alarm/) is an application that watches alarm
messages generated asynchronously through JMS. It utilizes the different techniques used in
JOnAS:

« An Entity Bean for AlarmRecord, persistent in a database

« A Session Bean to allow clients to visualize Alarms received
« A Message Driven Bean to catch Alarms

« JMS to use a topic where Alarms are sent and received

« Tomcat (for JSP pages and servlets)

« Security.

Earsample (http://jonas.objectweb.org/current/examples/earsample/) contains a complete J2EE ap-
plication. This sample is a simple stateful Session Bean that has synchronization and security.

This bean is accessed from a servlet in which the user is authenticated and JOnAS controls access to
the methods of the bean. The servlet performs a variety of lookups (resource-ref, resource-env-ref,
env-entry, ejb-ref, and ejb-local-ref) in the java:comp/env environment to illustrate how the uniform
naming works in the servlets.

» The cMp2 directory (http://jonas.objectweb.org/current/examples/cmp2/) contains an example il-
lustrating most of the concepts of CMP 2.0.

+ jaasclient (http://jonas.objectweb.org/current/examples/jaasclient/) contains an example of a
JAAS login module that illustrates the different methods for authentication.

There are different callback handlers that demonstrate how to enter identification at a command line
prompt, either with a dialog or without a prompt (where the client uses its own login/password).

Each directory contains a README that explains how to build and run each example.

2.2.2. An Example With Database Access
The eb example contains two Entity beans that manage Account objects.

The two beans share the same interface (Account); one with bean-managed persistence (BMP, explicit
persistence), the other with container-managed persistence (CMP, implicit persistence). The default
CMP implementation is CMP 1.1. A CMP 2.0 implementation is also provided and its use is described
in the README.

Before running this example, perform the steps in:



18 Chapter 2. Getting Started with JOnAS

+ Section 2.2.2.1 Configuring Database Access
+ Section 2.2.2.2 Creating the Table in the Database
+ Section 2.2.2.3 Configuring the Classpath

2.2.2.1. Configuring Database Access

In order to be able to access your relational database, JOnAS will create and use a DataSource object
that must be configured according to the database that will be used.

These DataSource objects are configured via properties files. $ JONAS_ROOT/conf contains templates
for configuring DataSource objects for databases such as Oracle and PostgreSQL:

+ $JONAS_BASE/conf/Oraclel.properties
e S$JONAS_BASE/conf/PostgreSQLl.properties

Depending on your database, you can customize one of these files with values appropriate for your
installation. After doing so, you must update the property jonas.service.dbm.datasources in
the jonas.properties file.

For example, for the Oraclel.properties file.
jonas.service.dbm.datasources Oraclel

Section 3.5.7 Configuring the Database Service provides more details about DataSource objects and
their configuration.

2.2.2.2. Creating the Table in the Database

The $JONAS_ROOT/examples/src/eb directory contains an SQL script for Oracle: Account . sql
($JONAS_ROOT/examples/src/eb/Account.sql). If your Oracle server is running and you are using
CMP 1.1, you can create the table used by the example. If you are using CMP 2.0, do not create the
table.

2.2.2.2.1. Example: Creating the Table in Oracle
sqlplus user/passwd
SQL> Q@Account.sql

SQL> quit

2.2.2.3. Configuring the Classpath

The JDBC driver classes must be accessible from the classpath. To enable that, update the
config_env file (http://jonas.objectweb.org/current/bin/unix/config_env).

In this file, set one of the following variables: IDB_CLASSES, ORACLE_CLASSES, or POST-
GRE_CLASSES with the appropriate value for your database installation.



Chapter 2. Getting Started with JOnAS 19

2.2.2.4. Building the eb Example

The simplest way to compile this example is to go to the $JONAS_ROOT/examples/src/eb
directory  ($JONAS_ROOT/examples/src/eb/) and use the compile.sh shell script
($JONAS_ROOT/examples/src/eb/compile.sh).

If the Ant 1.5 build tool is installed on your machine, you can build the JOnAS examples by using
the build.xml files located in the $JONAS_ROOT/examples or $JONAS_ROOT/examples/src
directories. To do this, use the build. sh shell script.

2.2.2.5. Running the eb Example

Here, again, two processes are involved:

» The JOnAS server in which beans will be loaded
» The Java client that creates instances of beans and calls business methods on it.

To run this example:

1. Run the JOnAS server to make beans available to clients:
service jonas start

jonas admin -a eb.jar

The following messages are displayed on the standard output:
The JOnAS Server ’jonas’ version-number is ready and running on rmi

message-header : AccountExpl available

message—-header : AccountImpl available

2. Run the Java clients in another terminal emulator window:
jclient eb.ClientAccount AccountImplHome

jclient eb.ClientAccount AccountExplHome

The example eb has run successfully if the following output displays:
Getting a UserTransaction object from JNDI

Connecting to the AccountHome

Getting the list of existing accounts in database
101 Antoine de St Exupery 200.0

102 alexandre dumas fils 400.0

103 conan doyle 500.0

104 alfred de musset 100.0

105 phileas lebegue 350.0

106 alphonse de lamartine 650.0

Creating a new Account in database

Finding an Account by its number in database
Starting a first transaction, that will be committed

Starting a second transaction, that will be rolled back

Getting the new list of accounts in database



20

Chapter 2. Getting Started with JOnAS

101 Antoine de St Exupery 200.0
102 alexandre dumas fils 300.0
103 conan doyle 500.0

104 alfred de musset 100.0

105 phileas lebegue 350.0

106 alphonse de lamartine 650.0
109 John Smith 100.0

Removing Account previously created in database

ClientAccount terminated

. Before ending this session, be sure to stop the JOnAS server:

service jonas stop



@ redhat Chapter 3.
JONAS Configuration

This chapter describes how to configure JOnAS.

3.1. JOnAS Configuration Rules

As described in Chapter 2 Getting Started with JOnAS, JOnAS is pre-configured and ready to use
directly with RMI/JRMP for remote access, if visibility to classes other than those contained in the
JOnAS distribution in $JONAS_ROOT/11ib is not required.

To use RMI/II0P for remote access or to work with additional Java classes (for example, JDBC driver
classes), you must perform additional configuration tasks, such as setting a specific port number for
the registry.

The JOnAS distribution contains a number of configuration files in $JONAS_ROOT/conf directory.
These files can be edited to change the default configuration. However, it is recommended that the
configuration files needed by a specific application running on JOnAS be placed in a separate location.
This is done by using an additional environment variable called JONAS_BASE.

3.1.1. JONAS_BASE Environment Variable

AWarning

JONAS configuration files are read from the $JoNAS_BASE/conf directory. If Jonas_Bask is not de-
fined, it is automatically initialized to $JoNAS_ROOT.

There are two ways to use the JONAS_BASE environment variable:

1. Perform the following actions:
a. Create a new directory and initialize JONAS_BASE with the path to this directory.

b. Create the following sub-directories in $JONAS_BASE:
e conf
¢ ejbjars
¢ apps
¢« webapps
* rars
« logs

c. Copy the configuration files located in $JONAS_ROOT/conf into $JONAS_BASE/conf.
Then, modify the configuration files according to the requirements of your application, as
explained in the following sections.

2. Perform the following actions:
« Initialize $JONAS_BASE with a path.

« Change to the $JONAS_ROOT directory and enter:
ant create_jonasbase



22 Chapter 3. JOnAS Configuration

This copies all the required files and creates all the directories.

Note

The puild.xml files provided with the JOnAS examples support Jonas_sask. If this environment
variable is defined prior to building and installing the examples, the generated archives are installed
under the appropriate sub-directory of sJonas_Bast. For example, the EJB-JAR files corresponding
to the sample examples of $JONAS_ROOT/examples/src/ are installed in $JONAS_BASE/ejbjars.

3.2. Configuring the JOnAS Environment

3.2.1. The JOnAS Configuration File

The JOnAS server is configured via a configuration file named jonas.properties.It contains a list
of key/value pairs presented in the Java properties file format.

The default configuration is provided in $JONAS_ROOT/conf/jonas.properties (refer to
$JONAS_BASE/conf/jonas.properties). This file, which holds all possible properties with
their default values, is mandatory. The JOnAS server looks for this file at start time in the
$JONAS_BASE/conf directory ($JONAS_ROOT/conf if $JONAS_BASE is not defined).

Most of the properties are related to the JOnAS services that can be launched in the JOnAS server.
These properties are described in detail in Section 3.5 Configuring JOnAS Services.

The property jonas.orb.port is not related to any service. It identifies the port number on which
the remote objects receive calls. Its default value is 0, which means that an anonymous port is chosen.
When the JOnAS server is behind a firewall, this property can be set to a specific port number.

When several JOnAS servers must run simultaneously, it is beneficial to set a different name for each
JOnAS server in order to administer these servers.

Also note that it is possible to define configuration properties on the command line:
java -Dproperty=value

Use the jonas check command to review the JOnAS configuration state. (Refer to Section 6.1
jonas.)

3.2.2. Configuration Scripts

The JOnAS distribution contains the $JONAS_ROOT/bin/unix/setenv and
$JONAS_ROOT/bin/unix/config_env configuration scripts.

These configuration scripts set useful environment variables for JAVA setup ($JAVA and $JAVAC).
They add $JONAS_BASE/conf to the $CLASSPATH if $JONAS_BASE is set, otherwise they add
$JONAS_ROOT/conf. These scripts are called by almost all other scripts (jclient, jonas,
newbean, registry, GenIC).

Therefore, when requiring the visibility of specific . jar files, the best practice is to update the
config_env file. For example, to see some of the JDBC driver classes, one or more of the variables
IDB_CLASSES, ORACLE_CLASSES, and POSTGRE_CLASSES must be updated.

Another way to place an additional . jar in the classpath of your JOnAS server is to insert it at the
end of the config_env file:



Chapter 3. JOnAS Configuration 23

CLASSPATH=<The_Path_To_Your_Jar>$SPS$CLASSPATH

Note that an additional environment variable called XTRA_CLASSPATH can be defined to load specific
classes at JOnAS server start-up. Refer to Chapter 5 JOnAS Class Loader Hierarchy.

3.3. Configuring the Communication Protocol and JNDI

3.3.1. Choosing the Protocol

Typically, access to JNDI (the Java Naming and Directory Interface) is bound to a jndi.properties
file that must be accessible from the classpath. This is somewhat different within JOnAS. Starting with
JOnAS 3.1.2, multi-protocol support is provided through the integration of the CAROL component
(refer to http://www.objectweb.org/carol). This currently provides support for RMI/JRMP, RMI/IIOP,
and CMI (clustered protocol) by changing the configuration. Other protocols may be supported in the
future. This configuration is now provided within the carol.properties file (that includes what
was provided in the jndi.properties file). This file is supplied with the JOnAS distribution in the
$JONAS_ROOT/conf directory (refer to $JONAS_BASE/conf/carol.properties).

The following communication protocols are supported:

+ RMI/JRMP is the JRE implementation of RMI on the JRMP protocol. This is the default commu-
nication protocol.

+ RMI/IIOP is the JRE implementation of RMI over the IIOP protocol.

+ CMI (Cluster Method Invocation) is the JOnAS communication protocol used for clustered config-
urations. Note that this protocol is based on JRMP.

The carol .properties file contains:

# jonas rmi activation (jrmp, iiop, or cmi)

carol.protocols=jrmp

#carol.protocols=cmi

#carol.protocols=iiop

#carol.protocols=jeremie

# RMI JRMP URL
carol.jrmp.url=rmi://localhost:1099

# RMI IIOP URL
carol.iiop.url=iiop://localhost:2000

# CMI URL
carol.cmi.url=cmi://localhost:2001

# general rules for jndi
carol.jndi.java.naming.factory.url.pkgs=org.objectweb. jonas.naming

CAROL can be customized by editing the $JONAS_BASE/conf/carol.properties file to:

+ Choose the protocol through the carol.protocols property.
+ Change localhost to the hostname where registry will be run.
+ Change the standard port number.

If the standard port number is changed, registry must be run with this port number as the argument,
registry <Your Portnumber>,when the registry is not launched inside the JOnAS server.



24 Chapter 3. JOnAS Configuration

You can configure JOnAS to use several protocols simultaneously. To do this, just specify a comma-
separated list of protocols in the carol.protocols property of the carol.properties file. For
example:

# jonas rmi activation (choose from jrmp, iiop, and cmi)
carol.protocols=jrmp, iiop

3.3.2. Security and Transaction Context Propagation

JOnAS implements EJB security and transactions by using the communication layer to propagate
the security and transaction contexts across method calls. By default, the communication proto-
col is configured for context propagation. However, this configuration can be changed by disabling
the context propagation for security and/or transaction; this is done primarily to increase perfor-
mance. The context propagation can be configured in the jonas.properties file by setting the
jonas.security.propagationand jonas.transaction.propagation properties to true or
false:

# Enable the Security context propagation
jonas.security.propagation true

# Enable the Transaction context propagation
jonas.transaction.propagation true

3.3.3. Multi-protocol Deployment (GenIC)

The JOnAS deployment tool (GenIC) must be told which protocol stubs (for remote invocation) are to
be generated. Choosing several protocols will eliminate the need to redeploy the EJBs when switching
from one protocol to another. The default is that GenIC generates stubs for rmi /jrmp. To change this
configuration, call GenIC as described in Section 6.5 GenIC. Use the -protocols option to specify
a comma-separated list of protocols (chosen from jrmp, iiop, and cmi). For example:

GenIC -protocols jrmp, iiop

This list of protocols can also be specified for Ant EJB tasks (refer to Chapter 27 Ant EJB Tasks:
Using EJB-JAR):

<Jjonas destdir="${dist.ejbjars.dir}"
jonasroot="${jonas.root}"
protocols="jrmp, iiop"
keepgenerated="true"
verbose="${verbose}"
mappernames="5{mapper.names}"
additionalargs="${genicargs}">

</jonas>

3.4. Configuring Logging System (monolog)

The logging system is based on Monolog, the standard API for ObjectWeb projects (refer to
http://www.objectweb.org/monolog/doc/index.html). Configuring trace messages inside Jonas can be
done in two ways:



Chapter 3. JOnAS Configuration 25

+ Changing the trace.properties file to configure the traces statically, before the JOnAS Server
is run (refer to $JONAS_BASE/conf/trace.properties).

+ Using the jonas admin command (refer to Section 6.1 jonas) to configure the traces dynamically
while the JOnAS Server is running.

Note

The SQL requests sent to a database can be easily traced using the JOnAS Logging system and
the integrated P6Spy tool. The configuration steps are described in Chapter 4 Configuring JDBC
DataSources.

3.4.1. trace.properties Syntax

A standard file is provided in $JONAS_ROOT/conf/trace.properties (refer to
$JONAS_BASE/conf/trace.properties). Use the CLASSPATH to retrieve this file.

The monolog documentation described in http://www.objectweb.org/monolog/doc/index.html pro-
vides more details about how to configure logging. Monolog is built over a standard log API (currently,
log47). Loggers can be defined, each one being backed on a handler.

A handler represents an output, is identified by its name, has a type, and has some additional
properties. Two handlers have been defined in the trace.properties file (refer to
$JONAS_BASE/conf/trace.properties):

+ tty is basic, standard output on a console, with no headers.
+ logf is a handler for printing messages on a file.

Each handler can define the header it will use, the type of logging (console, file, rolling file), and the
file name.

Note that if the tag aut omatic is specified as the output filename, JOnAS will replace this tag with a
file pointing to $JONAS_BASE/logs/<jonas_name_server>-<timestamp>.log.

The 1ogf handler, which is bundled with JOnAS, uses this automatic tag.
Loggers are identified by names that are structured as a tree. The root of the tree is named root.

Each logger is a topical logger (that is, it is associated with a topic). Topic names are usually based
on the package name. Each logger can define the handler it will use and the trace level among the
following four values:

+ ERROR errors. Should always be printed.

+ WARN warning. Should be printed.

+ INFO informative messages, not typically used in Jonas (for example, test results).

+ DEBUG debug messages. Should be printed only for debugging.

If nothing has been defined for a logger, it will use the properties defined for its parent.

JOnAS code is written using the monolog API and can use the tty handler.



26 Chapter 3. JOnAS Configuration

3.4.1.1. Example: Setting the DEBUG Level

To set the DEBUG level for the logger used in the jonas_ejb module:

logger.org.objectweb. jonas_ejb.level DEBUG

3.4.1.2. Example: Setting the Output Traces to the Console and a File
To set the output of JOnAS traces to both the console and a file named /tmp/ jonas/log:
handler.logf.output /tmp/jonas.log

logger.org.objectweb. jonas.handler.0 tty
logger.org.objectweb. jonas.handler.1l logf

3.4.1.3. Example: Setting the Output Trace to a File
To set the output of JOnAS traces to a file in the $JONAS_BASE/logs/ directory:

handler.logf.output automatic
logger.org.objectweb. jonas.handler.0 logf

3.5. Configuring JOnAS Services

JOnAS may be viewed as a number of manageable built-in services started at server launching time.
JOnAS is also able to launch external services, which can be defined as explained in Chapter 24
JORAS Services.

The following is a list of the JOnAS built-in services:

registry
The registry binds remote objects and resources that will later be accessed via JNDI. It is
automatically launched before all the other services when starting JOnAS.

Jmx
The jmx service enables you to administer the JOnAS servers and the JOnAS services via a
JMX-based administration console. jmx launches automatically.
JOnAS uses MX4]J (refer to http://mx4j.sourceforge.net/).

jtm
The Transaction Manager service is used for the support of distributed transactions. This is the
only mandatory service for JOnAS.

dbm
The database service is required by application components that need to access relational
databases.

resource

The resource service is needed for access to Resource Adapters conformant to the J2EE Con-
nector Architecture Specification.



Chapter 3. JOnAS Configuration 27

jms
As of the 4.1 release, a JMS provider can be integrated through the deployment of a resource
adapter.

security

The security service enforces security at runtime.

ear

The EAR service provides support for J2EE applications.
mail
The Mail service is required by e-mail applications.
ejb
The EJB Container service provides support for EJB application components.

web

The WEB Container service provides support for web components (as servlets and JSP). At this
time JOnAS provides an implementation of this service for Tomcat.

The WebServices service provides support for WebServices (WSDL publication).

The services available in a JOnAS server are those specified in the JOnAS configuration file. The
jonas.services property in the jonas.properties file must contain a list of the required service
names. Currently, these services are started in the order in which they appear in the list. Therefore,
the following constraints should be considered:

+ jmx must precede all other services in the list (except registry) in order to allow the management
of these services.

+ jtm must precede the dbm, resource, and jms services.
+ security must be after dbm, as it uses datasources.

+ The services used by the application components must be listed before the container service used to
deploy these components. For example, if the application contains EJBs that need database access,
dbm must precede e jb in the list of required services.

Example:
jonas.services registry, jmx, jtm, dbm, security, resource, jms, mail, ejb,ws,web, ear

The registry can be omitted from the list because this service is automatically launched if it is not
already activated by another previously started server. This is also true for jmx, since, beginning with
JOnAS 3.1, this service is automatically launched after the registry.

The dbm, resource, and jms services are listed after the jtm.

The application components deployed on this server can use Java Messaging and Java Mail because
jms and mail are listed before e jb.

Configuration parameters for services are located in the jonas.properties file. They must follow
the strict naming convention that a service XX will be configured via a set of properties:

jonas.service.XX.foo something
jonas.service.XX.bar else



28 Chapter 3. JOnAS Configuration

3.5.1. Configuring the Registry Service

The registry service is used for accessing the RMI registry, CMI registry, or CosNaming (iiop),
depending on the configuration of communication protocols specified in carol.properties. (refer
to Section 3.3 Configuring the Communication Protocol and JNDI.)

There are several Registry-launching modes based on the value of the JOnAS property
jonas.service.registry.mode. The possible values of this property are:

automatic
The Registry is launched in the same JVM as JOnAS Server, if not already started. This is the
default value.

collocated

The Registry is launched in the same JVM as the JOnAS Server.

remote
The Registry must be launched before the JOnAS Server in a separate JVM. (Refer to Section
6.4 registry.)

The port number on which the Registry is launched is defined in the carol.properties file.

3.5.2. Configuring the EJB Container Service

The EJB Container service is the primary JOnAS service. It provides EJB containers for EJB compo-
nents.

You can create an EJB container from an EJB-JAR file in the following ways:

+ The corresponding EJB-JAR file name is listed in the jonas.service.ejb.descriptors prop-
erty in the jonas.properties file. If the file name does not contain an absolute path, it should
be located in the $JONAS_BASE/ejbjars/ directory. The container is created when the JOnAS
server starts.

Example:
jonas.service.ejb.descriptors Bank.jar

In this example the Container service creates a container from the EJB-JAR file named Bank . jar.
JOnAS will search for this file in the $JONAS_BASE/ejbjars/ directory.

+ To automatically create an EJB container at server start-up time, place the EJB-JAR
files in an autoload directory. The name of this directory is specified using the
jonas.service.ejb.autoloaddir property in the jonas.properties file.

JOnAS also allows for loading unpacked EJB components. The name of the xml file containing the
EJB’s deployment descriptor must be listed in the jonas.service.ejb.descriptors property.
Note that the JOnAS server must have access to the component’s classes, which may be achieved using
the XTRA_CLASSPATH environment variable (refer to Chapter 5 JOnAS Class Loader Hierarchy).

3.5.3. Configuring the WEB Container Service

The WEB Container service provides WEB containers for the WEB components used in the J2EE
applications. JOnAS provides an implementation of the WEB Container service for Tomcat 5.0.x.

A WEB container is created from a WAR file. If the file name does not contain an absolute path name,
it must be located in the $JONAS_BASE/webapps/ directory.



Chapter 3. JOnAS Configuration 29

JOnAS can create WEB containers when the JOnAS server starts by providing the corresponding file
names via the jonas.service.web.descriptors property in the jonas.properties file.

Example:

jonas.service.web.descriptors Bank.war

In this example the WEB Container service creates a container from the WAR file named Bank .war.
It searches for this file in the $JONAS_BASE/webapps/ directory.

By using webapp directories instead of packaging a new WAR file each time, you can improve the
development process. You can replace the classes with the new compiled classes, reload the servlets in
your browser, and immediately see the changes. This is also true for the JSPs. Note that these reload
features can be disabled in the configuration of the Tomcat web container at production time.

Example of using the jonasAdmin/ webapp directory instead of jonasAdmin.war.

1.In the JONAS_BASE/webapps/autoload directory, create a directory (for example,
jonasAdmin): JONAS_BASE/webapps/autoload/jonasAdmin

2. Move the jonasAdmin.war file to this directory.
3. Unpack the WAR file to the current directory, then remove the WAR file.

4. At the next JOnAS startup, the webapp directory is used instead of the WAR file. Change the
JSP and see the changes at the same time.

3.5.4. Configuring the WebServices Service

3.5.4.1. A. Choose a Web Service Engine

At this time, only one implementation for WebServices is available: the Axis implementation. But in
the future, a Glue implementation can be made easily.

In jonas.properties:

#...
# the fully qualifier name of the service class
jonas.service.ws.class org.objectweb. jonas.ws.AxisWSServiceImpl

#...

3.5.4.2. B. Choose One or More WSDL Handler(s)

WSDL Handlers are used to locate and publish all your WSDL documents. You can use several WSDL
Handlers as long as you define them in the jonas.properties file.

Example:
If you want to publish a WSDL into the local file system, use the FileWSDLHandler

In jonas.properties:

#...
# a list of comma separated WSDL Handlers
jonas.service.ws.wsdlhandlers filel
# Configuration of the file WSDL Handler
jonas.service.ws.filel.type file
# Make sure users who run JOnAS have read/write access in this directory
jonas.service.ws.filel.location /path/to/directory/where/store/wsdls
#...



30 Chapter 3. JOnAS Configuration

3.5.5. Configuring the EAR Service

The EAR service allows deployment of complete J2EE applications (including both EJB-JAR and
WAR files packed in an EAR file). This service is based on the WEB container service and the
EJB container service.The WEB container service is used to deploy the WARs included
in the J2EE application; the EJB container service is used to deploy the EJB containers for the EJB-
JARs included in the J2EE application.

This service may be configured by setting the jonas.service.ear.descriptors property in
jonas.properties file. This property provides a list of ears that must be deployed when JOnAS
is launched.

When using relative paths for EAR file names, the files should be located in the $JONAS_BASE/apps/
directory.

Example:
jonas.service.ear.descriptors Bank.ear

In this example the EAR service will deploy the EAR file named Bank . ear. It will search for this
file in the $JONAS_BASE/apps/ directory.

3.5.6. Configuring the Transaction Service

The Transaction service is used by the Container service in order to provide transaction management
for EJB components as defined in the deployment descriptor. This is a mandatory service.

The Transaction service uses a Transaction manager that may be local or may be launched in another
JVM (a remote Transaction manager). Typically, when there are several JOnAS servers working to-
gether, one Transaction service must be considered as the master and the others as slaves. The slaves
must be configured as if they were working with a remote Transaction manager.

The following is an example of the configuration for two servers: one named TM in which a standalone
Transaction service will be run, one named EJB that will be used to deploy an EJB container:

jonas.name ™
jonas.services Jtm
jonas.service. jtm.remote false

and

jonas.name EJB

jonas.services jmx, security, jtm, dbm, ejb
jonas.service. jtm.remote true
jonas.service.ejb.descriptors foo.jar

Another possible configuration option is the value of the transaction time-out, in seconds, via the
jonas.service. jtm.timeout property.

The following is the default configuration:

jonas.service. jtm.timeout 60



Chapter 3. JOnAS Configuration 31

3.5.7. Configuring the Database Service

Note

The description of the new JDBC Resource Adapters as a replacement for the database service is
located in Chapter 40 Configuring JDBC Resource Adapters.

To allow access to one or more relational databases (for example, Oracle, PostgreSQL, and so on),
JOnAS will create and use DataSource objects. Such a DataSource object must be configured accord-
ing to the database that will be used for the persistence of a bean. More details about DataSource
objects and their configuration are provided in Chapter 4 Configuring JDBC DataSources.

The following subsections briefly explain how to configure a DataSource object for your database in
order to be able to run the Entity Bean example.

Note that the SQL requests sent to the database can be easily traced using the JOnAS Logging system
and the integrated P6Spy tool. The configuration steps are described in Section 4.4 Tracing SQL
Requests Through P6Spy.

3.5.7.1. Configuring Oracle for the Supplied Example

You can find a template Oraclel.properties file in the installation directory (refer to
$JONAS_BASE/conf/Oraclel.properties). This file is used to define a DataSource object
that is named Oraclel. This template must be updated with values appropriate to your installation.
The fields are the following:

datasource.name JNDI name of the DataSource: The name used in the example is jdbc_1.

datasource.url The JDBC database URL: for the Oracle JDBC "Thin" driver it is
jdbc:oracle:thin: @ hostname:sql*net_port_number:ORACLE_SID If using
an Oracle OCI JDBC driver, the URL is jdbc:oracle:oci7: or
jdbc:oracle:oci8:

datasource.classname | Name of the class implementing the Oracle JDBC driver:
oracle. jdbc.driver.OracleDriver

datasource.mapper Adapter (JORM), mandatory for CMP2.0 only (more details in Section 4.2
CMP2.0/JORM): rdb .oracles for Oracle 8 and prior versions

datasource.username | Database user name

datasource.password | Database user password

For the EJB platform to create the corresponding DataSource object, the Oraclel name must be in
the jonas.properties file on the jonas.service.dbm.datasources line:

jonas.service.dbm.datasources Oraclel

There may be several DataSource objects defined for an EJB server, in which case there will
be several dataSourceName.properties files and a list of the DataSource names on the
jonas.service.dbm.datasources line of the jonas.properties file:

jonas.service.dbm.datasources Oraclel, Oracle2

To create the table used in the example with the SQL script that is provided in the
examples/src/eb/Account.sql file, the Oracle server must be running with a JDBC




32 Chapter 3. JOnAS Configuration

driver installed. (Oracle JDBC drivers can be downloaded from Oracle’s web site:
http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html)

For example:

sglplus user/passwd
SQL> @Account.sqgl
SQL> quit

The JDBC driver classes must be accessible from the classpath. To do this, update the config_env
file SJONAS_ROOT/bin/unix/config_env.

3.5.7.2. Configuring Other Databases

The same type of process can be used for other databases. A template of datasource for PostgreSQL
and for InterBase is supplied with JOnAS. Although many other databases are currently used by the
JOnAS users (for example, Informix, Sybase, SQL Server), not all JDBC drivers have been tested
against JOnAS.

3.5.8. Configuring the Security Service

The Security service is used by the Container service to provide security for EJB components. The
Container service provides security in two forms: declarative security and programmatic secu-
rity. The Security service uses security roles and method permissions located in the EJB deployment
descriptor.

Note that:

+ JOnAS relies on Tomcat (http://jakarta.apache.org/tomcat) for the identification of the web clients.
The Java clients use the JAAS login modules for the identification. JOnAS performs the user au-
thentication.

In the $JONAS_ROOT/conf/jonas-realm.xml file you can define three types of Realm for
JOnAS:

+ Memory realm: users, groups, and roles are written in the file in the section
<jonas-memoryrealm> of the $JONAS_ROOT/conf/jonas-realm.xml file.

- Datasource realm: users, groups, and roles information is stored in a database; the configura-
tion for accessing a specific datasource is described in the section < jonas-dsrealm> of the
$JONAS_ROOT/conf/jonas-realm.xml file.

The configuration requires the name of the datasource, the tables used, and the names of the
columns.

« LDAP realm: users, groups, and roles information is stored in an LDAP directory. This is de-
scribed in the section < jonas-ldaprealm> of the $JONAS_ROOT/conf/jonas-realm.xml
file.

There are some optional parameters. If they are not specified, some of the parameters are
set to a default value. That is, if the providerUrl element is not set, the default value is
ldap://localhost:389.

Edit the jonas-realm_1_0.dtd DTD file to see the default values.
For Tomcat, use the realm: org.objectweb. jonas.security.realm.web.catalina50.JACC

These realms require as an argument the name of the resource to be used for the authentication.
This is the name that is in the jonas-realm.xml file.



Chapter 3. JOnAS Configuration 33

» There is no mapping for the security between JOnAS and the target operational environment. More
specifically, the roles defined for JOnAS cannot be mapped to roles of the target operational envi-
ronment (for example, groups).

There is one property in the jonas.properties file for configuring the security service: the
jonas.security.propagation property should be set to true (which is the default value) to
allow the security context to propagate across method calls. Refer to Section 3.3.2 Security and
Transaction Context Propagation.

3.5.8.1. Using Web Container Tomcat 5.0.x Interceptors for Authentication

With Tomcat 5.0.x, go to the $JONAS_ROOT/conf/server.xml file, the
$JONAS_BASE/conf/server.xml file, the $CATALINA_HOME/conf/server.xml file, or the
$CATALINA_BASE/conf/server.xnl file and replace the following line:

<Realm className="org.objectweb.jonas.security.realm.web.catalina50.JACC"
debug="99" resourceName="memrlm_1"/>

with this line:

<Realm className="org.objectweb. jonas.security.realm.JRealmCatalina4l" \
debug="0" resourceName="memrlm_ 1" />

A memory, Datasource, or LDAP resource can be used for the authentication, with the correct name
of the specified resource as resourceName that is: memrlm_1, memrlm_2, dsrlm_1, ldaprlm_1,
etc.

3.5.8.2. Configuring Mapping Principal/Roles

JOnAS relies on the jonas-realm.xml file for access control to the methods of EJB components
(refer to $JONAS_BASE/conf/jonas-realm.xml).

Example of a secured bean with the role jonas:

<assembly-descriptor>
<security-role>
<role-name>jonas</role-name>
</security-role>
<method-permission>
<role-name>jonas</role-name>
<method>
<ejb-name>Bean</ejb-name>
<method-name>*</method-name>
< /method>
< /method-permission>

</assembly-descriptor>

The following subsections describe how to configure the different resources for performing authen-
tication if it is necessary to add a user that has the specified role (jonas) and is authorized to call
methods, etc.



34 Chapter 3. JOnAS Configuration

3.5.8.2.1. Configuring a Memory Resource in the jonas-realm.xml File

To add the role ’jonas’, place this example role in the <roles> section:

<roles>
<role name="jonas" description="Role used in
the sample security howto" />
</roles>

Then, add a user with the specified role. Add a user with the ’jonas’ role in the <users> section:

<users>
<user name="jonas_user" password="jonas_password" roles="jonas" />
</users>

The <groups> section permits grouping roles. Add the memory resource in the jonas-realm.xml
file:

< jonas-memoryrealm>
[...]
<memoryrealm name="howto_memory_1">
<roles>
<role name="jonas" description="Role used in
the sample security howto" />
</roles>
<users>
<user name="jonas_user" password="jonas_password" roles="jonas" />
</users>
</memoryrealm>
[...]

</jonas-memoryrealm>

3.5.8.2.2. Configuring a Datasource Resource in the jonas-realm.xml File
First, build the tables in which the users and roles will be stored.
Example of tables :

realm_users: Add a user jonas_user with the password jonas_password
jonas_user jonas_password

Note that the table can contain more than two columns.

realm_roles: Add the role jonas to the user jonas_user
jonas_user jonas

Now, declare the resource in the jonas-realm.xmnl file.

The dsName element describes the INDI name of the datasource to use. Thus, a Datasource configu-
ration with the right JNDI name for the dbm service must be set in the jonas.properties file.

The datasource resource to add in the jonas-realm.xml file is:

<Jjonas-dsrealm>

[...]



Chapter 3. JOnAS Configuration 35

<dsrealm name="howto_datasource_realml"
dsName="7jdbc_1"
userTable="realm users" userTableUsernameCol="user_name"
userTablePasswordCol="user_pass"
roleTable="realm_roles" roleTableUsernameCol="user_name"
roleTableRolenameCol="role_name"
/>
[...]
</jonas-dsrealm>

3.5.8.2.3. Configuring an LDAP Resource in the jonas-realm.xml File

The wuser is added in the LDAP server. In this case, all the wusers are on the
ou=people, dc=jonas, dc=objectweb, dc=org DN.

For example, for the wuser jonas_user the unique name will be: DN
uid=jonas_user, ou=people,dc=jonas, dc=objectweb, dc=org

The role jonas will be added on the ou=groups, dc=jonas, dc=objectweb, dec=org DN. In this
case: DN cn=jaas, ou=groups, dc=jonas, dc=objectweb, dc=org

The user is added to the role by adding a field uniquemember to the role: uniquemember =
uid=jonas, ou=people, dc=jonas, dc=objectweb, dc=org

LDIF format for the user:

# jonas_user, people, Jjonas, objectweb, org

dn: uid=jonas_user, ou=people,dc=jonas,dc=objectweb,dc=org
objectClass: inetOrgPerson

uid: jonas_user

sn: jonas_user

cn: JOnAS user

userPassword:: jonas_password

LDIF format for the role:

# jonas, groups, Jjonas, objectweb, org

dn: cn=jonas,ou=groups,dc=jonas,dc=objectweb,dc=org

objectClass: groupOfUniqueNames

uniqueMember: uid=jonas_user, ou=people, dc=jonas, dc=objectweb, dc=org
cn: jonas

Now the jonas-realm.xml file can be customized by adding a LDAP resource.

There are two authentication methods:

+ The bind method (default): In order to check the access rights, the resource attempts to login to the
LDAP server with the given username and password.

+ The compare method: The resource retrieves the password of the user from the LDAP server and
compares this password to the password given by the user.

Note

The compare method requires the admin roles in the configuration in order to read the user pass-
words.



36 Chapter 3. JOnAS Configuration

All the elements of the configuration for the LDAP resource can be found in the
jonas-realm_1_0.dtd DTD file (refer to http://jonas.objectweb.org/current/xml/jonas-
realm_1_0.dtd).

For this sample, it is assumed that the LDAP server is on the same computer and is on the default port
(389). It takes all the default values of the DTD.

The datasource resource to add in the jonas-realm.xml file is:
<jonas-ldaprealm>
[...]
<ldaprealm name="howto_ldap_realml"
baseDN="dc=jonas,dc=objectweb, dc=org" />

[...]
</jonas-ldaprealm>

3.5.8.3. Configuring Client Authentication Based on the Client Certificate in the Web
Container

3.5.8.3.1. Introduction

In order to set up the client authentication based on client certificate in a Web container, do the fol-
lowing:

1. Configure the Realm the Web container will have to use.

2. Configure an SSL listener on the Web container.

3. Configure the Web application to make it ask a client certificate.
4. Configure the JAAS LoginModules.

5. Populate the Realm access list.

It is mandatory to possess a X.509 certificate for your Web container on each external interface (IP
address) that accepts secure connections. This one can be digitally signed by a Certification Authority
or can be autosigned.

3.5.8.3.2. Step 1: Configure the Realm the Web Container Uses

With Tomcat 5.0.x, in the $JONAS_ROOT/conf/server.xml file, the
$JONAS_BASE/conf/server.xml file, the $CATALINA_HOME/conf/server.xml file, or the
$CATALINA_BASE/conf/server.xnl file, replace the current Realm by the following:

<Realm
className="org.objectweb. jonas.security.realm.web.catalina50.JAAS" />

The class specified uses the JAAS model to authenticate the users. Thus, to choose the resource in
which to look for authentication data, configure JAAS.

3.5.8.3.3. Step 2: Configure an SSL Listener on the Web Container

Uncomment the following section in the server.xml file:

<Connector className="org.apache.catalina.connector.http.HttpConnector"
port="9043" minProcessors="5" maxProcessors="75" enableLookups="true"



Chapter 3. JOnAS Configuration 37

acceptCount="10" debug="0" scheme="https" secure="true">
<Factory className="org.apache.catalina.net.SSLServerSocketFactory"
clientAuth="false" protocol="TLS"/>
</Connector>

OImportant

Set the c1ientauth parameter to false, otherwise all Web applications will request a client certificate
if they need SSL. The client authentication will be configured later in the web.xm1 file in the specific
WAR files.

For more information, refer to http://jakarta.apache.org/tomcat/tomcat-5.0-doc/ssl-howto.html.

3.5.8.3.4. Step 3: Configure your Web Application to Request a Client Certificate
Add the following lines to the web . xm1 file of the WAR file of the Web application:

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>Example Authentication Area</realm-name>
</login-config>

OImportant

« Ensure that the restricted Web application area is configured in the web.xm1 file in the WAR file
with @ security-constraint declaration.

- Ensure that the Web application is always accessed with SSL, unless the Web container will not
get a certificate and will not be able to authenticate the user.

« When authentication is enabled on client certificate, the user's Web browser receives the list of the
Certification Authorities trusted by your Web application. A connection will be established with the
client only if it has a certificate issued by a trusted Certification Authority, otherwise its certificate
will be rejected.

The certificates of all the trusted Certification Authorities must be imported in the
$JAVA_HOME/jre/lib/security/cacerts keystore file (customize the SSL listener to modify this
location).

3.5.8.3.5. Step 4: Configure the JAAS LoginModules

This authentication process is built on the JAAS technology. This means that authentication is per-
formed in a pluggable way and the desired authentication technology is specified at runtime. There-
fore, you must choose the LoginModules to use in your Web container to authenticate the users.

3.5.8.3.5.1. Choose the LoginModules

org.objectweb. jonas.security.auth.spi.JResourcelLoginModule is the main
LoginModule. 1t is highly recommended that this be used in every authentication, as it verifies the
user authentication information in the specified resource.



38 Chapter 3. JOnAS Configuration

org.objectweb. jonas.security.auth.spi.JResourceLoginModule accepts the following
parameters:

+ resourceName: the name of the entry in the jonas-realm.xml file being used; this entry repre-
sents how and where the authentication information is stored. This is the only required parameter.

+ certCallback: Specify this optional parameter if you want this login module to ask for a cer-
tificate callback. By default it is set to false. When using JAAS realms with certificates, set it to
true.

org.objectweb. jonas.security.auth.spi.CRLLoginModule is the LoginModule that con-
tains authentication based on certificates. However, when enabled, it will also permit non-certificate
based accesses. It verifies that the certificate presented by the user has not been revoked by the Certi-
fication Authority that signed it. To use it, the directory in which to store the revocation lists (CRLs)
files or a LDAP repository must exist.

org.objectweb.jonas.security.auth.spi.CRLLoginModule can take the following param-
eters:

+ CRLsResourceName: this parameter specifies how the CRLs are stored:

« Directory: if the CRL files are stored in a directory on the machine, you must specify another
parameter pointing to that directory:

+ CRLsDirectoryName: the directory containing the CRL files (the extension for these files
must be .crl).

« LDAP: This functionality is experimental if your CRL files are stored in a LDAP repository, two
additional parameters must be specified:

+ address: the address of the server that hosts the LDAP repository

« port: the port used by the LDAP repository; CRLs are retrieved from an LDAP directory
using the LDAP schema defined in RFC 2587 (refer to http://www.ietf.org/rfc/rfc2587.txt).

3.5.8.3.5.2. Specify the Configuration Parameters

The JAAS configuration sits on a file in which the login module to use for authentication is described.
This file is located in $JONAS_BASE/conf and named jaas.config. To change its location and
name, edit the $JOANS_BASE/bin/jonas. sh script and modify the following line:

-Djava.security.auth.login.config=$JONAS_BASE/conf/jaas.config
The contents of the JAAS configuration file follow this structure:

Application_1 {
LoginModuleClassA Flag Options;
LoginModuleClassB Flag Options;
LoginModuleClassC Flag Options;
}i
Application_2 {
LoginModuleClassB Flag Options;
LoginModuleClassC Flag Options;
Yi
Other {
LoginModuleClassC Flag Options;



Chapter 3. JOnAS Configuration 39

LoginModuleClassA Flag Options;
}i

Sample of a configuration file with a CRL directory:

tomcat {
org.objectweb. jonas.security.auth.spi.CRLLoginModule required
CRLsResourceName="Directory"
CRLsDirectoryName="path_to/CRLs";
org.objectweb. jonas.security.auth.spi.JResourceLoginModule
required
resourceName="memrlm_1";

}i

There can be multiple entries in this file, specifying different configurations that JOnAS can use. The
entry dedicated to Tomcat must be named tomcat. Note that everything in this file is case-sensitive.

There is a flag associated with all the LoginModules to configure their behavior in case of success or
failure:

+ required: The LoginModule is required to succeed. If it succeeds or fails, authentication still
proceeds through the LoginModule list.

+ requisite: The LoginModule is required to succeed. If it succeeds, authentication continues
through the LoginModule list. If it fails, control immediately returns to the application (authen-
tication does not proceed through the LoginModule list).

+ sufficient: The LoginModule is not required to succeed. If it does succeed, control immediately
returns to the application (authentication does not proceed through the LoginModule list). If it fails,
authentication continues through the LoginModule list.

+ optimal: The LoginModule is not required to succeed. If it succeeds or fails, authentication still
proceeds through the LoginModule list.

3.5.8.3.6. Step 5: Populate the Realm Access List

Now, users will not have to enter a login/password. They will just present their certificates and au-
thentication is performed transparently by the browser (after the user has imported the certificate into
it). Therefore, the identity presented to the server is not a login, but a Distinguished Name: that is the
name identifying the person to whom the certificate belongs.

This name has the following structure:

CN=Someone Unknown, OU=0bjectWeb, 0=JOnAS, C=0RG

E : Email Address

CN : Common Name

OU : Organizational Unit

O : Organization

L : Locality

ST : State or Province Name
C : Country Name

The subject in a certificate contains the main attributes and may include additional ones, such as
Title, Street Address, Postal Code, Phone Number.

Previously in the jonas-realm.xml file a memory realm might contain:

<user name="jps_admin" password="admin" roles="administrator"/>



40 Chapter 3. JOnAS Configuration

To enter a certificate-based user access, you must now enter the user’s DN preceded by the String:
#4#DN# #, as shown in the following example:

<user name="##DN##CN=whale, OU=ObjectWeb, 0O=JOnAS, L=JOnAS, ST=JOnAS,
C=0ORG" password="" roles="jadmin" />

3.5.9. Configuring the JMS Service

Until JOnAS release 4.1, the only way to provide the JMS facilities was by setting a JMS service
when configuring JOnAS. The JMS service is a default setting in the jonas.properties config
file; however, this JMS service will not allow you to deploy 2.1 MDBs (Message Driven Beans), and
will eventually become deprecated in later JOnAS versions.

The new way to integrate a JMS platform is by deploying a J2EE 1.4 compliant resource adapter. How
you do this is described in Section 3.7 Configuring JMS Resource Adapters.

JOnAS integrates a third-party JMS implementation, JORAM (http://www.objectweb.org/joram/),
which is the default JMS service. Other IMS providers, such as SwiftMQ (http://www.swiftmq.com/
and WebSphere MQ (http://www-3.ibm.com/software/integration/mqfamily/), can easily be
integrated as JMS services.

The JMS service is used to contact (or launch) the corresponding MOM (Message Oriented Mid-
dleware) or JMS server. You should create the JMS-administered objects used by the EJB com-
ponents, such as the connection factories and the destinations, prior to the EJB execution, using the
proprietary JMS implementation administration facilities. JOnAS provides “wrappers” on such JIMS
administration APIs, which enable the EJB server itself to perform simple administration operations
automatically.

The JMS service is an optional service that must be started before the EJB container service.

The following are the properties that can be set in jonas.properties file for the JMS service:

+ jonas.service.jms.collocated for setting the JMS server launching mode. If set to true,
it is launched in the same JVM as the JOnAS Server (this is the default value). If set to false, it
is launched in a separate JVM, in which case the jonas.service. jms.url must be set with the
connection URL to the JMS server.

+ jonas.service.ejb.mdbthreadpoolsize is used for setting the default thread pool used for
Message Driven Beans (10 is the default value).

+ jonas.service.jms.queues and jonas.service.jms.topics are used for setting lists of
administered objects queues or topics at launching time.

+ jonas.service.jms.mom is used to indicate which class must be used to perform
administrative operations. This class is the wrapper to the actual JMS provider implementation.
The default class is org.objectweb.jonas_jms.JImsAdminForJoram, which is required
for JORAM (refer to http://joram.objectweb.org//). For the SwiftMQ product, obtain a
com.swiftmg.appserver.jonas.JmsAdminForSwiftMQ class from the SwiftMQ site
(http://www.swiftmq.com/).

Some additional information about JMS configuration (in particular, several JORAM advanced con-
figuration aspects) is provided in Section 26.4 JMS Administration and Section 26.5 Running an EJB
Performing JMS Operations.



Chapter 3. JOnAS Configuration 41

3.5.10. Configuring the Resource Service

The Resource service is an optional service that must be started as soon as EJB components
require access to an external Enterprise Information Systems. The standard way to do this is to use a
third-party software component called a Resource Adapter.

The role of the Resource service is to deploy the Resource Adapters in the JOnAS server, (that
is, configure it in the operational environment and, in JNDI name space, register a connection factory
instance that can be looked up by the EJB components).

The Resource service can be configured in one of the following ways:

+ The corresponding RAR file name is listed in the jonas.service.resource.resources prop-
erty in jonas.properties file. If the file name does not contain an absolute path name, then it
should be located in the $JONAS_BASE/rars/ directory.

Example:
jonas.service.resource.resources MyEIS

This file will be searched for in the $JONAS_BASE/rars/ directory. This property is a comma-
separated list of resource adapter file names (the . rar suffix is optional).

+ Another way to automatically deploy resource adapter files at the server start-up is to
place the RAR files in an autoload directory. The name of this directory is specified using
the jonas.service.resource.autoloaddir property in jonas.properties file. This
directory is relative to the $JONAS_BASE/rars/ directory.

A jonas-specific, resource-adapter configuration xml file must be included in each resource adapter.
This file replicates the values of all configuration properties declared in the deployment descriptor for
the resource adapter. Refer to Section 25.2 Defining the JOnAS Connector Deployment Descriptor for
additional information.

3.5.11. Configuring the JMX (Java Management Extension) Service

The JMX service is mandatory and will be started even if it is not present in the list of services. It is
configured by choosing one of the two supported JIMX implementations, SUN RI or MX4J. The choice
is made based on the value of the jonas.service. jmx.class property in the JOnAS configuration
file. The two possible values are:

+ org.objectweb.jonas.jmx.sunri.JmxServiceImpl,for SUN RI

+ org.objectweb.jonas.jmx.mx47.Mx4jImxServiceImpl,for MX4J

3.5.12. Configuring the Mail Service

The Mail service is an optional service that can be used to send email. It is based on JavaMail and
on the JavaBeans Activation Framework (JAF) API (refer to http:/java.sun.com/products/javamail/
and http://java.sun.com/products/beans/glasgow/jaf.html respectively).

A mail factory is required in order to send or receive mail. JOnAS provides two types of mail factories:
javax.mail.Sessionand javax.mail.internet.MimePartDataSource.

MimePartDataSource factories allow mail to be sent with a subject and the recipients already set.

Mail factory objects must be configured accordingly to their type. The subsections that follow briefly
describe how to configure Session and MimePartDataSource mail factory objects, in order to
run the SessionMailer SessionBean and the MimePartDSMailer SessionBean delivered with the
platform.



42 Chapter 3. JOnAS Configuration

3.5.12.1. Configuring a Session Mail Factory

The template MailSessionl.properties file supplied in the installation directory defines a mail
factory of type Session. The INDI name of the mail factory object is mailSession_1. This template
must be updated with values appropriate to your installation.

Refer to $JONAS_BASE/conf/MailSessionl.properties for a sample of the file and Section
3.5.12.4 Configuring a Mail Factory for the list of available properties.

3.5.12.2. Configuring MimePartDataSource Mail Factory

The template MailMimePartDS1.properties file supplied in the installation directory defines
a mail factory of MimePartDSMailer type. The JNDI name of the mail factory object is
mailMimePartDS_1. This template must be updated with values appropriate to your installation.

Refer to $JONAS_BASE/conf/MailMimePartDS1.properties forasample of the file and Section
3.5.12.4 Configuring a Mail Factory for a list of the available properties.

3.5.12.3. Configuring JONAS for a Mail Factory

Mail factory objects created by JOnAS must be given a name. In the mailsb example, two factories
called MailSessionl and MailMimePartDS1 are defined.

Each factory must have a configuration file whose name is the name of the factory with the
.properties extension (MailSessionl.properties for the MailSessionl factory).

Additionally, the jonas.properties file must define the jonas.service.mail.factories
property. For this example, it is:

jonas.service.mail.factories MailSessionl,MailMimePartDS1

3.5.12.4. Configuring a Mail Factory

A mail factory has the following required properties:

mail.factory.name JNDI name of the mail factory

mail.factory.type The type of the factory. This property can be
javax.mail.Session or
javax.mail.internet.MimePartDataSource.

Table 3-1. Required properties

A mail factory has the following optional authentication properties:

mail.authentication.username Set the username for the authentication.

mail.authentication.password Set the password for the authentication.

Table 3-2. Optional Authentication properties

The javax.mail.Session.properties file has the properties:




Chapter 3. JOnAS Configuration 43

mail.authentication.username

Set the username for the authentication.

mail.authentication.password

Set the password for the authentication.

mail.debug

The initial debug mode. Default is false.

mail.from

The return email address of the current user, used by the
InternetAddress method get LocalAddress.

mail.mime.address.strict

The MimeMessage class uses the InternetAddress method
parseHeader to parse headers in messages. This property
controls the strict flag passed to the parseHeader method. The
default is true.

mail.host

The default host name of the mail server for both Stores and
Transports. Used if the mail.protocol.host property is not
set.

mail.store.protocol

Specifies the default message access protocol. The session
method getStore () returns a Store object that implements this
protocol. By default the first Store provider in the configuration
files is returned.

mail.transport.protocol

Specifies the default message access protocol. The Session
method get Transport () returns a Transport object that
implements this protocol. By default, the first Transport provider
in the configuration files is returned.

mail.user

The default user name to use when connecting to the mail server.
Used if the mail.protocol.user property is not set.

mail. <protocol> .class

Specifies the fully- qualified class name of the provider for the
specified protocol. Used in cases where more than one provider
for a given protocol exists; this property can be used to specify
which provider to use by default. The provider must still be listed
in a configuration file.

mail.<protocol>.host

The host name of the mail server for the specified protocol.
Overrides the mail.host property.

mail. <protocol>.port

The port number of the mail server for the specified protocol. If it
is not specified, the protocol’s default port number is used.

mail. <protocol>.user

The user name to use when connecting to mail servers using the
specified protocol. Overrides the mail.user property.

Table 3-3. javax.mail.Session.properties

(Refer to JavaMail documentation at http://java.sun.com/products/javamail/1.3/docs/javadocs/overview-
summary.html for more information.)

mail.to Set the list of primary recipients (“to”) of the message.
mail.cc Set the list of Carbon Copy recipients (“cc”) of the message.
mail.bce Set the list of Blind Carbon Copy recipients (“bcc”) of the message.

mail.subject

Set the subject of the message.

Table 3-4.

MimePartDataSource

properties (used only if mailfactory.type is

javax.mail.internet.MimePartDataSource)



44 Chapter 3. JOnAS Configuration

3.6. Configuring the DB Service (hsql)

The DB service is an optional service that can be used to start a Java database server in the same JVM
as JOnAS.

The listening port and the database name can be set as follows:

jonas.service.db.port 9001
jonas.service.db.dbname db_jonas

You can use the $JONAS_ROOT/conf/HSQL1 .properties file with these default values.

The users are declared as follows:

jonas.service.db.user<l..n> login:password

For example, to give access to this database to the user jonas with the password jonas, use:
jonas.service.db.userl jonas: jonas

This login and this password (jonas/jonas) are used in the HSQL1 .properties file.

3.7. Configuring JMS Resource Adapters

Instead of using the JOnAS "JMS Service" for configuring a JMS platform, it is possible to use the
JOnAS "Resource Service" and JMS adapters that are compliant with the J2EE Connector Architec-
ture specification. The provided functionalities are the same, with the extra benefit of allowing the
deployment of 2.1 MDBs.

JMS connections are obtained from a JMS Resource Adapter (RA), which is configured to identify
a JMS server and access it. Multiple JMS RAs can be deployed, either via the jonas.properties
file, or via the JonasAdmin tool, or included in the autoload directory of the resource service. For
complete information about RAs in JOnAS, refer to Chapter 25 JOnAS and the Connector Architec-
ture.

3.7.1. JORAM Resource Adapter

This section describes how JMS Resource Adapters should be configured to provide messaging func-
tionalities to JOnAS components and applications.

The JORAM resource adapter archive (joram_for_jonas_ra.rar) is provided with the JOnAS
distribution. It can be found in the $JONAS_ROOT/rars directory. To deploy it, you can declare the
archive file in the jonas.properties file as follows:

jonas.service.resource.resources joram_for_jonas_ra
jms must be removed from the list of services:
jonas.services registry, jmx, jtm,dbm, security, resource, ejb, web, ear

The archive can also be deployed by putting it in the JOnAS rars/autoload directory.

The JORAM RA may be seen as the central authority to go through for connecting and using a
JORAM platform. The RA is provided with a default deployment configuration that:

« Starts a collocated JORAM server in non-persistent mode, with id 0 and name s0, on host
localhost and using port 16010; for doing so it relies on an a3servers.xml file located in the
$JONAS_ROOT/conf directory.



Chapter 3. JOnAS Configuration 45

+ Creates managed JMS ConnectionFactory instances and binds them with the names CF, QCF,
and TCF.

+ Creates administered objects for this server (JMS destinations and non-managed factories) as de-
scribed by the joram-admin. cfg file, located in the $JONAS_ROOT/conf directory; those objects
are bound with the names sampleQueue, sampleTopic, JCF, JQCF, and JTCF

This default behavior is strictly equivalent to the default JMS service’s behavior.

Of course, you can modify the default configuration.

3.7.1.1. Configuring the JORAM Adapter

jonas-ra.xml is the JOnAS specific deployment descriptor that configures the JORAM adapter.
Changing the configuration of the RA requires you to extract the deployment descriptor, edit it, and
update the archive file. The RACon£ig utility is provided for doing this (refer to Section 6.7 RAConfig
for a complete description). To extract the jonas-ra.xml file, use:

RAConfig joram_for_jonas_ra.rar
Then, to update the archive, use:
RAConfig -u jonas-ra.xml joram_for_ jonas_ra.rar

The jonas-ra.xml file sets the central configuration of the adapter, defines and sets managed con-
nection factories for outbound communication, and defines a listener for inbound communication.

The following properties are related to the central configuration of the adapter:

Property Name Description Possible Values

CollocatedServer Running mode of the True: when deploying, the adapter starts a
JORAM server to which collocated JORAM server.

the adapter gives access. | False: when deploying, the adapter con-
nects to a remote JORAM server.

Nothing (default True value is then set).

PlatformConfigDir Directory where the Any String describing an absolute path
a3servers.xml and (for example:
joram-admin.cfgfiles | /myHome/myJonasRoot/conf).
are located. Empty String, files will be searched in

$JONAS_ROOT/conf.

Nothing (default empty string is then set).

PersistentPlatform Persistence mode of the True: starts a persistent JORAM server.
collocated JORAM server | False: starts a non-persistent JORAM
(not taken into account if | server.

the JORAM server is set
as non collocated). Nothing (default False value is then set).




46

Chapter 3. JOnAS Configuration

listening on, used for
accessing a remote
JORAM server (non
collocated mode), and for
building appropriate
connection factories.

Property Name Description Possible Values

Serverld Identifier of the JORAM | Identifier corresponding to the server to
server to start (not taken start described in the a3servers.xml
into account if the file (ex: 1).

JORAM server is set as Nothing (default 0 value is then set).
non collocated).

ServerName Name of the JORAM Name corresponding to the server to start
server to start (not taken described in the a3servers.xml file
into account if the (ex: sl).

JORAM server is set as Nothing (default sO name is then set).
non collocated).

AdminFile Name of the file Name of the file (ex: myAdminFile.cfg).
describing the Nothing (default joram-admin.cfg name is
administration tasks to then set).
perform; if the file does
not exist, or is not found,
no administration task is
performed.

HostName Name of the host where Any host name (ex: myHost).
the JORAM server runs, Nothing (default localhost name is then
used for accessing a set).
remote JORAM server
(non collocated mode),
and for building
appropriate connection
factories.

ServerPort Port the JORAM server is | Any port value (ex: 16030).

Nothing (default 16010 value is then set).

Table 3-5. Adapter Configuration Properties

The jonas-connection-definition tags wrap properties related to the managed connection fac-

tories:

Property Name

Description

Possible Values

used for opening JMS
connections.

jndi-name Name used for binding the Any name (such as
constructed connection factory. | myQueueConnectionFactory).
UserName Default user name that will be | Any name (such as myName).

Nothing (default anonymous
name will be set).




Chapter 3. JOnAS Configuration

47

Property Name

Description

Possible Values

will be created from the factory
should be TCP or
local-optimized connections
(the collocated mode can only
be set if the JORAM server is
collocated; such factories will

UserPassword Default user password that will | Any name (such as myPass).
be used for opening JMS Nothing (default anonymous
connections. password will be set).

Collocated Specifies if the connections that | True (for building

local-optimized connections).
False (for building TCP con-
nections).

Nothing (default TCP mode
will be set).

only be usable from within
JOnAS).

Table 3-6. jonas-connection-definition Tags

The jonas-activationspec tag wraps a property related to inbound messaging:

Property Name Description Possible Values

jndi-name Binding name of a JORAM Any name (such as

object to be used by 2.1 MDBs. | joramActivationSpec).

Table 3-7. jonas-activationspec Tag

3.7.1.2. Configuring a Collocated JORAM Server

The a3servers.xml file describes a JORAM platform configuration and is used by a starting JO-
RAM server (thus, it is never used if JORAM is in non-collocated mode).

The default file provided with JOnAS is the following:

<?xml version="1.0"?2>
<config>
<server id="0" name="S0" hostname="localhost">
<service class="org.objectweb.joram.mom.proxies.ConnectionManager"
args="root root"/>
<service class="org.objectweb.joram.mom.proxies.tcp.TcpProxyService"
args="16010"/>
</server>
</config>

The above configuration describes a JORAM platform made of one unique JORAM server (id 0,
name s0), running on localhost, listening on port 16010. Those values are taken into account by the
JORAM server when starting. However they should match the values set in the deployment descriptor
of the RA, otherwise the adapter either will not connect to the JORAM server, or will build improper
connection factories.

3.7.1.3. Specifying Administration Tasks

The joram-admin.cfg file describes administered objects to be (optionally) created when deploying
the adapter.



48 Chapter 3. JOnAS Configuration

The default file provided with JOnAS creates a queue bound with the name sampleQueue, creates
a topic bound with the name sampleTopic, sets the anonymous user, and creates and binds non-
managed connection factories named JCF, JQOCF, and JTCF. It also defines a host name and server
port, which have the same meanings as the parameters set in the jonas-ra.xml file. Their goal is to
make it easy to change the host and port values without having to edit the deployment descriptor.

To request the creation of a queue with the name "myQueueName", add the line:
Queue myQueueName

To request the creation of a topic with the name "myTopicName", add the line:
Topic myTopicName

To request the creation of the user "myName" - "myPass", add the line:

User myName myPass

To request the creation of a non-managed ConnectionFactory to be bound with the name "myCF", add
the line:

CF myCF

To request the creation of a non-managed QueueConnectionFactory to be bound with the name
"myQCF", add the line:

QCF myQCF

To request the creation of a non-managed TopicConnectionFactory, to be bound with the name
"myTCF", add the line:

TCF myTCF

Note:

- All administration tasks are performed locally (that is, on the JORAM server to which the adapter
is connected).

- If a queue, a topic, or a user already exists on the JORAM server (for example because the server
is in persistent mode and has re-started after a crash, or because the adapter has been deployed,
undeployed, and is re-deployed giving access to a remote JORAM server), it will be retrieved
instead of being re-created.

3.7.1.4. Undeploying and Redeploying a JORAM Adapter

Undeploying a JORAM adapter either stops the collocated JORAM server, or disconnects from a
remote JORAM server. It is then possible to deploy the same adapter again:

« If set for running a collocated server, it will re-start it.

+ If the running mode is persistent, then server will be retrieved in its pre-undeployed state (with the
existing destinations, users, and possibly messages).

« If set for connecting to a remote server, the adapter will reconnect and access the destinations it
previously created.



Chapter 3. JOnAS Configuration 49

In the collocated persistent case, if you want to start a new JORAM server, remove its persistence
directory. This directory is located in JOnAS’ running directory, and has the same name as the JORAM
server (for example s0/ for server "s0").



50

Chapter 3. JOnAS Configuration



5) redhat

Chapter 4.
Configuring JDBC DataSources

This chapter shows the bean or application deployer how to configure the DataSources to connect the
application to databases.

4.1. Configuring DataSources

For both container-managed and bean-managed persistence, JOnAS makes use of relational
storage systems through the JDBC interface. JDBC connections are obtained from an object, the
DataSource, provided at the application server level. The DataSource interface is defined in
the JDBC 2.0 standard extensions (see http://java.sun.com/products/jdbc/). A DataSource object
identifies a database and a means to access it via a JDBC driver. An application server may request
access to several databases and thus provide the corresponding DataSource objects. Available
DataSource objects can be added on the platform; they must be defined in the jonas.properties
file. This section explains how DataSource objects can be defined and configured in the JOnAS
server.

To support distributed transactions, JOnAS requires the use of a JDBC2-XA-compliant driver. Such
drivers that implement the XADataSource interface are not always available for all relational
databases. JOnAS provides a generic driver-wrapper that emulates the XADataSource interface on a
regular JDBC driver.

leportant

It is important to note that this driver-wrapper does not ensure a real two-phase commit for distributed
database transactions.

JOnAS’s generic driver-wrapper provides an implementation of the DataSource interface that al-
lows DataSource objects to be defined using a JDBC1-compliant driver for some relational databases,
such as Oracle and PostgreSQL.

Neither the EJB specification nor the J2EE specification describe how to define DataSource objects so
that they are available to a J2EE platform. Therefore, this document, which describes how to define
and configure DataSource objects, is specific to JOnAS. However, the way to use these DataSource
objects in the Application Component methods is standard; that is, by using the resource manager con-
nection factory references (refer to the example in Section 8.6 Writing Database Access Operations
(Bean-Managed Persistence)).

A DataSource object should be defined in a file called DataSourcename.properties (for example,
Oraclel.properties for an Oracle DataSource), as delivered with the platform.

In the jonas.properties file, to define a DataSource “Oraclel”, add the name Oraclel (the same
name as in the properties file) to the line jonas.service.dbm.datasources, as follows:

jonas.service.dbm.datasources Oraclel,PostgreSQL

The property file defining a DataSource should contain the following information:

datasource.name JNDI name of the DataSource




52 Chapter 4. Configuring JDBC DataSources

datasource.url The JDBC database URL:
jdbc:database_vendor_subprotocol:...

datasource.classname Name of the class implementing the JDBC driver

datasource.username Database user name

datasource.password Database user password

A DataSource object for Oracle (for example, Oraclel), named jdbc_1 in JNDI, and using the Oracle
thin JDBC driver, would be described in a file called Oraclel.properties, as in the following
example:

datasource.name jdbc_1

datasource.url jdbc:oracle:thin:@malte:1521:0RA1
datasource.classname oracle.jdbc.driver.OracleDriver
datasource.username scott

datasource.password tiger

In this example, malte is the hostname of the server running the Oracle DBMS, 1521 is the SQL*Net
V2 port number on this server, and ORA1 is the ORACLE_S1ID.

This example makes use of the Oracle "Thin" JDBC driver. If your application server is running on the
same host as the Oracle DBMS, you can use the Oracle OCI JDBC driver; depending on the Oracle re-
lease. The URL to use for this would be jdbc:oracle:oci7, or jdbc:oracle:oci8. Oracle JDBC drivers can
be downloaded at the Oracle web site: http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html

To create a PostgreSQL DataSource object named jdbc_3 in JNDI, describe it as follows (in a file
PostGreSQL.properties):

datasource.name jdbc_3

datasource.url jdbc:postgresql://your_host/your_db
datasource.classname org.postgresgl.Driver
datasource.username useless

datasource.password useless

Properties having the useless value are not used for this type of persistence storage.

If the database user and password are placed in the DataSource description (the
DataSource-name.properties file), then Application Components should use the
getConnection () method. If the database user and password are omitted from the DataSource
description file, then Application Components should use the getConnection(String
username, String password) method. The resource reference of the associated datasource in
the standard deployment descriptor, the <res-auth> element, should have the corresponding value:
Container if the user and password are given in the DataSource description, Application if the
user and password are provided by the Application.

4.2. CMP2.0/JORM

To implement EJB 2.0 persistence (CMP2.0), JOnAS relies on the JORM framework (see
http://jorm.objectweb.org/index.html). JORM must adapt its object-relational mapping to the
underlying database and makes use of adapters called "mappers" for this purpose. Thus, for each type
of database (and more precisely for each JDBC driver), the corresponding mapper must be specified
in the DataSource properties file. This is the purpose of the datasource .mapper property.

The JORM database mapper named datasource .mapper has the following possible values:

+ rdb: generic mapper (JDBC standard driver ...)



Chapter 4. Configuring JDBC DataSources 53

» rdb.postgres: mapper for PostgreSQL
» rdb.oracle8: mapper for Oracle 8 and lesser versions
+ rdb.oracle: mapper for Oracle 9

+ rdb.mysql: mapper for MySQL

4.3. ConnectionManager Configuration

Each Datasource is implemented as a connection manager that can be configured via some additional
properties described in the following table. Refer to the Oraclel.properties file to see an example
of settings. All these settings have default values and are not required.

Property Name

Description

Default Value

jdbe.connchecklevel

JDBC connection checking
level: 0 (no check), 1 (check
connection), higher (call the
test statement)

1

connections in the pool

jdbc.connmaxage maximum age for jdbc 30 minutes
connections

jdbe.connteststmt test statement select 1

jdbc.minconpool Minimum number of 0

jdbc.maxconpool

Maximum number of

-1 (no max boundary)

connections in the pool

jdbc.connteststmt is not used when jdbc.connchecklevel is equal to 0 or 1.

jdbc.minconpool is used at DataSource creation time. Modifying this property during runtime has
no effect on already-created DataSources.

jdbc.maxconpool can be dynamically increased or decreased.

4.4. Tracing SQL Requests Through P6Spy

The P6Spy tool is integrated within JOnAS to provide a means for easily tracing the SQL requests
that are sent to the database (see http://www.p6spy.com/).

To enable this tracing feature, perform the following configuration steps:

1.Set the datasource.classname property of your DataSource properties file to
com.pb6spy.engine.spy.P6SpyDriver

2.Set the realdriver property in the spy.properties file (located within
$JONAS_BASE/conf) to the JDBC driver of your actual database

3. Verify that logger.org.objectweb.jonas.jdbc.sqgl.level is set to DEBUG in the
$JONAS_BASE/conf/trace.properties file.

Example:

DataSource properties file contents:

datasource.name jdbc_3
datasource.url jdbc:postgresqgl://your_host:port/your_db



54

datasource.
datasource.
datasource.
datasource.

classname
username
password
mapper

Chapter 4. Configuring JDBC DataSources

com.pbspy.engine.spy.P6SpyDriver
jonas

jonas

rdb.postgres

Within the $JONAS_BASE/conf/spy.properties file:

realdriver=org.postgresqgl.Driver

Within the $JONAS_BASE/conf/trace.properties file:

logger.org.objectweb. jonas. jdbc.sgl.level DEBUG



5) redhat Chapter 5.
JONAS Class Loader Hierarchy

This chapter is for the EAR application provider; that is, the person in charge of developing the J2EE
application components on the server side. It describes a new and important key feature of the J2EE
integration: the class loader hierarchy in JOnAS.

5.1. Understanding the Class Loader Hierarchy

An application is deployed by its own class loader. This means, for example, that if a WAR and an EJB
JAR are deployed separately, the classes contained in the two archives are loaded with two separate
classloaders with no hierarchy between them. Thus, the EJBs from within the JAR will not be visible
to the Web components in the WAR.

This is not acceptable in cases where the Web components of an application need to reference and use
some of the EJBs.

For this reason, prior to EAR files, when a Web application had to be deployed using EJBs, the EJB
JAR had to be located in the WEB-INF/1ib directory of the Web application.

Currently, with the J2EE integration and the use of the EAR packaging, class visibility problems no
longer exist and the EJB JAR is no longer required to be in the WEB-INF/1ib directory.

The following sections describe the JOnAS class loader hierarchy and explain the mechanism used to
locate the referenced classes.

5.2. Commons Class Loader

The JOnAS-specific commons class loader will load all classes and libraries required to start the
JOnAS server (that is, libraries for mail, Tomcat, etc.). This class loader has the system class loader
as parent class loader. The commons class loader adds all the common libraries required to start the
JOnAS server (J2EE applications, commons logging, ObjectWeb components, etc.); it also loads the
classes located in XTRA_CLASSPATH.

To have a library available for each component running inside JOnAS, add the required JAR files in the
JONAS_ROOT/1ib/ext directory or in JONAS_BASE/1ib/ext. The jars in JONAS_BASE/lib/ext
are loaded first, followed by the jars in JONAS_ROOT/lib/ext. All jars in subordinate directories
will also be loaded.

If a specific JAR is needed only for a web application (that is, you need to use a version of a JAR
file that is different than a version loaded by JOnAS), change the compliance of the web application
classloader to the Java 2 delegation model. See Section 5.6.3 WEB Class Loader.

5.3. Application Class Loader

The application class loader is a JOnAS-specific class loader that loads all application classes required
by the user applications. This implies that this loader will load all single RAR files, so all applications
have the visibility of the resource adapter’s classes. This class loader has the commons class loader as
its parent class loader.



56 Chapter 5. JOnAS Class Loader Hierarchy

5.4. Tools Class Loader

The tools class loader is a JOnAS-specific class loader that loads all classes for which applications
do not require visibility (that is, user applications will not be able to load the classes packaged in the
tools class loader). For example, it includes the jakarta velocity and digester components. This class
loader has the commons class loader as its parent class loader.

5.5. Tomcat Class Loader

The Tomcat class loader loads all classes of the Tomcat server (the CATALINA_HOME/server/lib
directory). The classes of the common directory of Tomcat (CATALINA_HOME/common/1ib direc-
tory) are loaded by the application class loader and not by this Tomcat class loader. Applications have
the visibility of the common classes and not the server classes. To have the visibility of the server
class, the context must have the privileged attribute set to true. This class loader has the application
class loader as its parent class loader.

5.6. JOnAS Class Loaders

The JOnAS class loader hierarchy that allows the deployment of EAR applications without placing
the EJB JAR in the WEB-INF/1ib directory consists of the following:

5.6.1. EAR Class Loader

The EAR class loader is responsible for loading the EAR application. There is only one EAR class
loader per EAR application. This class loader is the child of the application class loader, thus making
it visible to the JOnAS classes.

5.6.2. EJB Class Loader

The EJB class loader is responsible for loading all the EJB JARs of the EAR application, thus all the
EJBs of the same EAR application are loaded with the same EJB classloader. This class loader is the
child of the EAR class loader.

5.6.3. WEB Class Loader

The WEB class loader is responsible for loading the Web components. There is one WEB class loader
per WAR file, and this class loader is the child of the EJB class loader. Using this class loader hierarchy
(the EJB class loader is the parent of the WEB class loader) eliminates the problem of visibility
between classes when a WEB component tries to reference EJBs; the classes loaded with the WEB
class loader are definitely visible to the classes loaded by its parent class loader (EJB class loader).

The compliance of the class loader of the web application to the Java 2 delegation model can be
changed by using the jonas-web.xml file. This is described in Chapter 17 Defining the Web Deploy-
ment Descriptor.

If the java2-delegation-model element is set to false, the class loader of the web application
looks for the class in its own repository before asking its parent class loader.



Chapter 5. JOnAS Class Loader Hierarchy

5.7. JOnAS Class Loader Hierarchy

The resulting JOnAS class loader hierarchy is

1Al EJBs of this
1 EAR loaded by
1 this classioader
'

JOnAS Class loader

as follows:

EAR Class loader

EJB Class loader

EAR application 1

Figure 5-1. JOnAS Class Loader Hierarchy

EAR application 2



58

Chapter 5. JOnAS Class Loader Hierarchy



s) redhat

Chapter 6.
JOnAS Command Reference

Commands provided with JOnAS are described in this chapter.

+ Section 6.1 jonas: JOnAS manager

+ Section 6.2 jclient: Starting a JOnAS client

+ Section 6.3 newbean: Bean generator

+ Section 6.4 registry: Java Remote Object Registry
+ Section 6.5 GenIC: Container classes generator

+ Section 6.6 JmsServer

+ Section 6.7 RAConfig: Resource Adapter configuration tool

6.1. jonas

6.1.1. Synopsis

jonas start [-fg | -bg | -win] [-n name]

start a JOnAS server

jonas stop [-n name]

Stop a JOnAS server.

jonas admin [-n name] [admin_options]

Administer a JOnAS server.

jonas check

Check the environment before running a JOnAS server.

jonas version

Print the current version of JOnAS.

6.1.2. Description
This command provides the capability to start, stop, or administer JOnAS servers.

The outcome of this program may depend on the directory from which the command is run (that
is depending on the existence of a jonas.properties file in the current directory). It is possible
to set system properties to the program by using the JAVA_OPTS environment variable, if required.
Note that setting system properties with a -D option will always take precedence over the properties
described in the other jonas.properties files.

The jonas script /usr/share/jonas/bin/unix/jonas can be reviewed and possibly modified for assistance
with problems or for obtaining additional information.

There are five different sub-commands that depend on the first mandatory argument:



60 Chapter 6. JOnAS Command Reference

jonas start

Start a new JOnAS server. The process can be run in the foreground, in the background, or in
a new window. If the background option is chosen (default option), control is given back to the
caller only when the server is ready. The default name is jonas. A different name can be given
with the —n option.

jonas stop
Stop a running JOnAS server. Use the —n option if the server was given a name other than the
default name.

jonas admin
Administer a JOnAS server. Use the -n option if the server was given a name other than the
default name. Used without any other option, this command will prompt the user for an admin-
istrative command (interactive mode). Each administrative command exists in a non-interactive
mode, for use in applications such as shell scripts, for example. Refer to the option list for a
description of each.

jonas check
Check the environment settings before running a JOnAS server. (This is a very basic trou-
bleshooting test.)

jonas version

Print the current version of JOnAS.

6.1.3. Options

Each option may be pertinent only for a subset of the five different sub-commands. For example,
jonas check and jonas version do not accept any options.

—n name

Give a name to the JOnAS server. The default is jonas. Used for start, stop, or admin.

— fg
Used for start only. The server is launched in the foreground: control is given back to the user
only when the JOnAS server is stopped.

-bg
Used for start only. The server is launched in the background. Control is given back to the user
only when the JOnAS server is ready. This is the default mode.

-win

Used for start only. The server is launched in a new window.

Used for admin only. Prints a help with all possible options.

—a filename

Used for admin only. Deploys a new application described by filename inside the JOnAS
Server. The application can be one of the following:



Chapter 6. JOnAS Command Reference 61

« A standard EJB-JAR file. This leads to the creation of a new EJB Container in the JOnAS
Server. If the file name has a relative path, this path is relative to where the EJB server has
been launched or relative to the $JONAS_ROOT/ejbjars directory for an EJB-JAR file.

+ A standard WAR file containing a WEB Component. If the file name has a relative
path, this path is relative to where the EJB server has been launched or relative to the
$JONAS_ROOT/webapps directory for a WAR file.

« A standard EAR file containing a complete J2EE application. If the file name has a rela-
tive path, this path is relative to where the EJB server has been launched or relative to the
$JONAS_ROOT/apps directory for an EAR file.

-r filename

Used for admin only. Dynamically removes a previous —a filename command.
—gc

Used for admin only. Runs the garbage collector in the specified JOnAS server.

-passivate

Used for admin only. Passivates all Entity Bean instances. This affects only instances outside

transaction.
-e
Used for admin only. Lists the properties of the specified JOnAS server.
-3
Used for admin only. Lists the registered JNDI names, as seen by the specified JOnAS server.
-1
Used for admin only. Lists the beans currently loaded by the specified JOnAS server.
-sync

Used for admin only. Synchronizes the Entity Bean instances on the current JOnAS server. Note
that this affects only the instances that are not involved in a transaction.

—-debug topic
Used for admin only. Sets the topic level to DEBUG.

-tt timeout
Used for admin only. Changes the default timeout for transactions. t imeout is in seconds.

Each jonas admin option has its equivalent in the interactive mode. To enter interactive mode and
access the following list of subcommands, type jonas admin [-n name] without any other argu-
ment. To exit from interactive mode, use the quit command.

Interactive Command Online Matching Command
addbeans -a fileName

env —-e

gc -gc

help -2




62 Chapter 6. JOnAS Command Reference

Interactive Command Online Matching Command
jndinames -3

listbeans -1

removebeans -r fileName

sync —-sync

trace —-debug topic

ttimeout -tt timeout

quit exit interactive mode

6.1.4. Examples
jonas check
jonas start -n jonasl

jonas admin -n jonasl -a beanl.jar

jonas stop -n jonasl

6.2. jclient

6.2.1. Synopsis
jclient [options] java-class [args]

Start a Java client.

6.2.2. Description

The jclient command allows the user to easily start a "heavy" java client that will be able to reach
beans in remote JOnAS servers and start distributed transactions.

6.2.3. Options

—cp classpath

Add an additional classpath before running the Java program.

6.2.4. Example

jclient package.javaclassname args



Chapter 6. JOnAS Command Reference 63

6.3. newbean

6.3.1. Synopsis

newbean

Generates skeletons for all the necessary files for making a bean.

6.3.2. Description

The newbean tool helps the bean writer start developing a bean by generating skeletons for all the nec-
essary files for making a bean. Note that this tool creates only templates of the files. These templates
must then be customized and the business logic written. However, the files should be compilable.

To create these templates, type newbean and enter a set of parameters in interactive mode.
newbean generates a build.xml file.

The Bean Name must start with a capital letter. Avoid the reserved names: Home, EJB, Session,
Entity. This name will be used as a prefix for all filenames relative to the bean.

The Bean Type must be one of the following:

+ S Session Bean
+ E Entity Bean
+ MD Message-Driven Bean

The Session Type must be one of the following:

« L Stateless Session Bean
+ F Stateful Session Bean

The Persistence manager must be one of the following:

+ B Bean-Managed Persistence (BMP)
+ ¢ Container-Managed Persistence (CMP 1.x)
+ 2 Container-Managed Persistence (CMP 2.x)

The Bean Location must be one of the following:

» R Remote Interfaces
» L Local Interfaces

The Package name is a dot-separated string representing the package to which the bean belongs.
Usually this is the same as the current directory.

The Jar name argument is the name that will be used to build the . jar file. Do not provide the . jar
extension with this argument. Typically, the last part of the package name is used.

The Primary Key class is the class that represents the primary key. It is required only for Entity
Beans. Its possible values are:

+ S java.lang.String
+ I java.lang.Integer

+ 0 Object (Will be chosen later)



64 Chapter 6. JOnAS Command Reference

6.3.3. Example

newbean
Bean Name
> MyFirstBean

Bean type

S Session bean

E Entity bean

MD Message-Driven bean
> E

Persistance manager
B Bean
C Container (CMP 1.x)
C2 Container (CMP 2.x)
> C

Bean location
R Remote
L Local

> R

Package name
> truc.machin

Jar name
> machin

Primary Key class

S String

I Integer

O Object
> s

Creating bean MyFirstBean (type ECR) in package truc.machin
Your bean files have been created. You can now customize them.

6.3.4. Example 2

-bash-2.05b$ /usr/share/jonas/bin/unix/newbean
Bean Name
> MySecondBean

Bean type

S Session bean

E Entity bean

MD Message-Driven bean
> S

Session type
L Staless
F  Stateful
> F

Bean location



Chapter 6. JOnAS Command Reference 65

R Remote
L Local
> L

Package name
> com.redhat.rhdb.cc. jonas

Jar name
> rhaps-cc-jonas

Creating bean MySecondBean (type SFL) in package com.redhat.rhdb.cc. jonas
Your bean files have been created. You can now customize them.

6.4. registry

6.4.1. Synopsis

registry [ port ]

Creates and starts a remote object registry.

6.4.2. Description

The registry tool creates and starts a remote object RMI registry on the specified port of the current
host. If the port is omitted, the registry is started on port 1099.

Note that, by default, the registry is collocated in the same JVM as the JOnAS Server. In this case, it
is not necessary to use this tool; the registry is automatically launched.

6.4.3. Options
port

Port number.

6.4.4. Example

The registry command can normally be run in the background:

registry &

6.5. GenlC

6.5.1. Synopsis

GenlC [ Options | TnputFilename
Starts the GenIC utility.



66 Chapter 6. JOnAS Command Reference

6.5.2. Description
The GenlC utility generates the container classes for JOnAS from the given Enterprise Java Beans.

The InputFileName is either the file name of an EJB-JAR file or the file name of an XML deploy-
ment descriptor of beans.

The GenlC utility does the following in the order listed:

1. Generates the sources of the container classes for all the beans defined in the deployment de-
scriptor.

2. Compiles these classes via the Java compiler.
3. Generates stubs and skeletons for those remote objects via the RMI compiler.
4.If the InputFileis an EJB-JAR file, adds the generated classes in this EJB-JAR file.

6.5.3. Options

-d directory
Specifies the root directory of the class hierarchy.
This option can be used to specify a destination directory for the generated files.

If the —d option is not used, the package hierarchy of the target class is ignored and the generated
files are placed in the current directory.

If the InputFileis an EJB-JAR file, the generated classes are added to the EJB-JAR file, unless
the -noaddinjar option is set.
-invokecmd

Invoke, directly in some cases, the method of the Java class corresponding to the command.

-javac options

Specifies the java compiler name to use (javac by default).

-javacopts options

Specifies the options to pass to the java compiler.

-keepgenerated

Do not immediately delete generated files.
-noaddinjar

If the InputFile is an EJB-JAR file, do not add the generated classes to the EJB-JAR file.
-nocompil

Do not compile the generated source files via the Java and RMI compilers.

-novalidation

Remove xml validation during parsing.

-protocols

Comma-separated list of protocols (chosen from jrmp, iiop, cmi) for which stubs should be gen-
erated. Default is §rmp.



Chapter 6. JOnAS Command Reference 67

-rmiopts options

Specifies the options to pass to the rmi compiler.

-verbose

Displays additional information about command execution.

-mappernames

Comma-separated list of mapper names for which the container classes will be generated. Used
for the JORM-based implementation of CMP 2.0. A mapper is used by JORM for accessing a
given database. This list of mappers corresponds to the list of potential databases upon which the
Entity Beans can be deployed.

6.5.4. Example
GenIC -d ../../classes sb.xml

Generates container classes of all the Enterprise JavaBeans defined in the sb.xml file. Classes are
generated in the . ./../classes directory adhering to the classes hierarchy.

GenIC sb.jar

Generates container classes for all the Enterprise JavaBeans defined in the sb. jar file and adds the
generated classes to this EJB-JAR file.

6.5.5. Environment

If InputFile is an XML deployment descriptor, the classpath must include the paths of the directo-
ries in which the Enterprise Bean’s classes can be found, as well as the path of the directory specified
by the -d option.

If InputFile is an EJB-JAR file, the classpath must include the path of the directory specified by the
—d option.
6.6. JmsServer

6.6.1. Synopsis
JmsServer

Launches the JORAM Server.

6.6.2. Description
Launches the JORAM Server (that is, the MOM) with its default options.



68 Chapter 6. JOnAS Command Reference

6.6.3. Options

None.

6.6.4. Example

The JmsServer command is typically run in the background:

JmsServer &

6.7. RAConfig

6.7.1. Synopsis

RAConfig [ Options | TnputFilename [OutputFilename]

Generates a JOnAS-specific resource-adapter configuration file.

6.7.2. Description

The RAConfig utility generates a JOnAS-specific resource-adapter configuration file
(jonas-ra.xml) from an ra.xml file (Resource adapter deployment descriptor).

The InputFileName is the file name of a resource adapter.

The OutputFileNameis the file name of an output resource adapter used with the —p (required) or
-u (optional).

6.7.3. Options

-? 0r —~help options

Gives a summary of the options.

—-dm, -ds, -pc, -xa DriverManager, DataSource, PooledConnection, XAConnection
Specifies the rarlink value to configure; used with the -p option.

-j jndiname
It is a mandatory option. It specifies the JNDI name of the connection factory. This name cor-
responds to the name of the <jndi-name> element of the <jonas-resource> element in the
JOnAS-specific deployment descriptor. This name is used by the resource service for registering
in JNDI the connection factory corresponding to this resource adapter.

-p database_properties_file

Specifies the name of the database.properties file to process. The result of this processing will be
a jonas-ra.xml file that will update the /META-INF/jonas-ra.xml file in the output RAR.



Chapter 6. JOnAS Command Reference 69

-r rarlink

Specifies the JNDI name of the RAR file with which to link. This option can be used when this
RAR file will inherit all attributes associated with the specified JNDI name. If this option is
specified in the jonas-ra.xml file, it is the only file needed in the RAR, and the ra.xml file
will be processed from the rarlink file.

-u Inputname
Specifies the name of the XML file to process. This file will update the
/META-INF/jonas-ra.xml file in the RAR. If this argument is used, it is the only argument
executed.

-verbose

Verbose mode. Displays the deployment descriptor of the resource adapter on standard
System.out.

6.7.4. Example

RAConfig -j adapt_1 MyRA.rar
Generates the jonas-ra.xml file from the ra.xm1l file.

After jonas-ra.xml has been configured for the MyRA. rar file,
RAConfig -u jonas-ra.xml MyRA.rar

Updates/inserts the jonas-ra.xml file into the RAR file.

RAConfig -dm -p MySQL1 $JONAS_ROOT/rars/autoload/JOnAS_jdbcDM MySQL_dm

Generates the jonas-ra.xml file from the ra.xm1l file of the JOnAS_jdbcDM. rar and inserts
the corresponding values from the MySQL1.properties file. The jonas-ra.xml file is then
added/updated to the MySQL_dm. rar file. This RAR file can then be deployed and will replace
the configured MySQL1 datasource.



70

Chapter 6. JOnAS Command Reference



Il. Enterprise Beans Programmer’s Guide

This part contains information for the Enterprise Beans programmer; that is, the person in charge of
developing the software components on the server side and, more specifically, the Session Beans.

The individual in charge of developing Enterprise Beans should consult chapters in this part for in-
structions on how to perform the following tasks:

+ Write the source code for the beans.
+ Specify the deployment descriptor.
+ Bundle the compiled classes and the deployment descriptor into an EJB JAR file.

For information on developing the three types of enterprise beans, refer to:

+ Chapter 7 Developing Session Beans
+ Chapter 8 Developing Entity Beans
+ Chapter 9 Developing Message-Driven Beans.

The deployment descriptor specification is presented in Chapter 10 Defining the Deployment Descrip-
tor.

More specific issues related to transaction behavior, the Enterprise Bean environment, and security
service are presented in the corresponding chapters: Chapter 11 Transactional Behavior of EJB Ap-
plications, Chapter 12 Enterprise Bean Environment, and Chapter 13 Security Management.

Principles and tools for providing EJB JAR files are presented in Chapter 14 EJB Packaging and
Chapter 15 Application Deployment and Installation Guide.

Table of Contents

7. Developing Session Beans 73
8. Developing Entity Beans 79
9. Developing Message-Driven Beans 119
10. Defining the Deployment Descriptor 129
11. Transactional Behavior of EJB Applications 135
12. Enterprise Bean Environment 141
13. Security Management 145
14. EJB Packaging 149

15. Application Deployment and Installation Guide 151







E) redhat Chapter 7.
Developing Session Beans

This chapter is for the Enterprise Bean provider; that is, the person in charge of developing the soft-
ware components on the server side and, more specifically, the Session Beans.

Note

In this documentation, the term "Bean" always means "Enterprise Bean."

7.1. Introduction to Session Beans

A Session Bean is composed of the following parts, which are developed by the Enterprise Bean
provider:

» The Component Interface is the client view of the bean. It contains all the “business methods” of
the bean.

+ The Home Interface contains all the methods for the bean life cycle (creation, suppression) used by
the client application.

+ The bean implementation class implements the business methods and all the methods (described in
the EJB specification), allowing the bean to be managed in the container.

+ The deployment descriptor contains the bean properties that can be edited at assembly or deploy-
ment time.

Note that, according to the EJB 2.0 specification, the couple “Component Interface and Home Inter-
face” may be either local or remote. Local Interfaces (Home and Component) are to be used by a
client running in the same JVM as the EJB component. Create and finder methods of a local or remote
home interface return local or remote component interfaces respectively. An EJB component can have
both remote and local interfaces, even if typically only one type of interface is provided.

The description of these elements is provided in the sections that follow.

A Session Bean object is a short-lived object that executes on behalf of a single client. There are
stateless and stateful Session Beans. Stateless Beans do not maintain state across method calls. Any
instance of stateless beans can be used by any client at any time. Stateful Session Beans maintain state
within and between transactions. Each stateful session bean object is associated with a specific client.
A stateful Session Bean with container-managed transaction demarcation can optionally implement
the SessionSynchronization interface. In this case, the bean objects will be informed of transaction
boundaries. A rollback could result in a Session Bean object’s state being inconsistent; in this case,
implementing the SessionSynchronization interface may enable the bean object to update its state
according to the transaction completion status.

7.2. The Home Interface

A Session Bean’s home interface defines one or more create (. ..) methods. Each create method
must be named create and must match one of the e jbCreate methods defined in the enterprise
Bean class. The return type of a create method must be the enterprise Bean’s remote interface type.

The home interface of a stateless Session Bean must have one create method that takes no argu-
ments.



74 Chapter 7. Developing Session Beans

All the exceptions defined in the throws clause of an ejbCreate method must be defined in the
throws clause of the matching create method of the home interface.

A remote home interface extends the javax.ejb.EJBHome interface, while a local home interface
extends the javax.ejb.EJBLocalHome interface.

7.2.1. Session Bean Example:

The following examples use a Session Bean named Op.

public interface OpHome extends EJBHome {
Op create(String user) throws CreateException, RemoteException;

}

A local home interface could be defined as follows (Local0p being the local component interface of
the bean):

public interface LocalOpHome extends EJBLocalHome {
LocalOp create(String user) throws CreateException;

}

7.3. The Component Interface

The Component Interface is the client’s view of an instance of the Session Bean. This interface
contains the business methods of the Enterprise Bean. If it is remote, the interface must
extend the javax.ejb.EJBObject interface; if it is local, the interface must extend the
javax.ejb.EJBLocalObject interface. The methods defined in a remote component interface
must follow the rules for Java RMI (this means that their arguments and return value must be valid
types for Java RMI, and their throws clause must include the java.rmi.RemoteException). For
each method defined in the component interface, there must be a matching method in the enterprise
Bean’s class (same name, same arguments number and types, same return type, and same exception
list, except for RemoteException).

7.3.1. Example:

public interface Op extends EJBObject {
public void buy (int Shares) throws RemoteException;
public int read () throws RemoteException;

}

The same type of component interface could be defined as a local interface (even if it is not considered
good design to define the same interface as both local and remote):

public interface LocalOp extends EJBLocalObject {
public void buy (int Shares);
public int read ();



Chapter 7. Developing Session Beans 75

7.4. The Enterprise Bean Class

This class implements the Bean’s business methods of the component interface and the methods of the
SessionBean interface, which are those dedicated to the EJB environment. The class must be defined
as public and may not be abstract. The Session Bean interface methods that the EJB provider must
develop are the following:

+ public void setSessionContext (SessionContext ic);

This method is used by the container to pass a reference to the SessionContext to the bean instance.
The container invokes this method on an instance after the instance has been created. Generally,
this method stores this reference in an instance variable.

+ public void ejbRemove () ;

This method is invoked by the container when the instance is in the process of being removed by the
container. Since most session Beans do not have any resource state to clean up, the implementation
of this method is typically left empty.

+ public void ejbPassivate () ;

This method is invoked by the container when it wants to passivate the instance. After this method
completes, the instance must be in a state that allows the container to use the Java Serialization
protocol to externalize and store the instance’s state.

+ public void ejbActivate () ;

This method is invoked by the container when the instance has just been reactivated. The instance
should acquire any resource that it has released earlier in the e jbPassivate () method.

A stateful session Bean with container-managed transaction demarcation can optionally implement
the javax.ejb.SessionSynchronization interface. This interface can provide the Bean with
transaction-synchronization notifications. The Session Synchronization interface methods that
the EJB provider must develop are the following:

+ public void afterBegin () ;

This method notifies a session Bean instance that a new transaction has started. At this point the
instance is already in the transaction and can do any work it requires within the scope of the trans-
action.

+ public void afterCompletion (poolean committed);

This method notifies a session Bean instance that a transaction commit protocol has completed and
tells the instance whether the transaction has been committed or rolled back.

« public void beforeCompletion () ;

This method notifies a session Bean instance that a transaction is about to be committed.

7.4.1. Enterprise Bean Class Example:
package sb;

import java.rmi.RemoteException;

import javax.ejb.EJBException;

import javax.ejb.EJBObject;

import javax.eJjb.SessionBean;

import javax.ejb.SessionContext;

import javax.ejb.SessionSynchronization;
import javax.naming.InitialContext;
import javax.naming.NamingException;



76 Chapter 7. Developing Session Beans

// This is an example of Session Bean, stateful, and synchronized.

public class OpBean implements SessionBean, SessionSynchronization {

protected int total = 0; // actual state of the bean
protected int newtotal = 0; // value inside Tx, not yet committed.
protected String clientUser = null;

protected SessionContext sessionContext = null;

public void ejbCreate(String user) {

total = 0;
newtotal = total;
clientUser = user;

}

public void ejbActivate() {
// Nothing to do for this simple example
}

public void ejbPassivate() {
// Nothing to do for this simple example
}

public void ejbRemove() {
// Nothing to do for this simple example
}

public void setSessionContext (SessionContext sessionContext) {
this.sessionContext = sessionContext;

}

public void afterBegin() {
newtotal = total;

}
public void beforeCompletion() {

// We can access the bean environment everywhere in the bean,
// for example here!
try f
InitialContext ictx = new InitialContext();
String value = (String) ictx.lookup ("Jjava:comp/env/propl");
// value should be the one defined in ejb-jar.xml
} catch (NamingException e) {
throw new EJBException (e);
}
}

public void afterCompletion(boolean committed) ({
if (committed) {
total = newtotal;
} else {
newtotal = total;
}
}

public void buy (int s) {
newtotal = newtotal + s;
return;

}

public int read() {



Chapter 7. Developing Session Beans 77

return newtotal;

7.5. Tuning the Stateless-Session Bean Pool

JOnAS handles a pool for each stateless Session Bean. The pool can be configured in the JOnAS-
specific deployment descriptor with the following tags:

min-pool-size

This optional integer value represents the minimum instances that will be created in the pool
when the bean is loaded. This will improve bean instance creation time, at least for the first
beans. The default value is 0.

max-cache-size

This optional integer value represents the maximum of instances in memory. This value keeps
JOnAS scalable.

The policy is that, at bean creation time, an instance is taken from the pool of free instances. If
the pool is empty, a new instance is always created. When the instance must be released (at the
end of a business method), it is pushed into the pool, except if the current number of instances
created exceeds the max-cache-size, in which case this instance is dropped. The default value
1ISno limit.

<Jjonas-ejb-jar>
<Jjonas-session>
<ejb-name>SessSLR</ejb-name>
< jndi-name>EJB/SessHome</jndi-name>
<max-cache-size>20</max-cache-size>
<min-pool-size>10</min-pool-size>
</Jjonas-session>
</Jjonas-ejb-jar>

Example 7-1. Stateless-Session Bean Pool Example



78

Chapter 7. Developing Session Beans



5) redhat

Chapter 8.
Developing Entity Beans

This chapter is for is the Enterprise Bean provider; that is, the person in charge of developing the
software components on the server side, and more specifically the Entity Beans.

Note

In this documentation, the term "Bean" always means "Enterprise Bean."

8.1. Introduction to Entity Beans

An Entity Bean is comprised of the following elements, which are developed by the Enterprise Bean
Provider:

» The Component Interface is the client view of the bean. It contains all the “business methods” of
the bean.

+ The Home Interface contains all the methods for the bean life cycle (creation, suppression) and for
instance retrieval (finding one or several bean objects) used by the client application. It can also
contain methods called “home methods,” supplied by the bean provider, for business logic that is
not specific to a bean instance.

+ The Primary Key class (for Entity Beans only) contains a subset of the bean’s fields that identi-
fies a particular instance of an Entity Bean. This class is optional since the bean programmer can
alternatively choose a standard class (for example, java.lang.String)

+ The bean implementation class implements the business methods and all the methods (described in
the EJB specification) allowing the bean to be managed in the container.

+ The deployment descriptor, containing the bean properties that can be edited at assembly or de-
ployment time.

Note

According to the EJB 2.0 specification, the “Component Interface and Home Interface” can be either
local or remote. Local Interfaces (Home and Component) are to be used by a client running in the
same JVM as the EJB component. Create and finder methods of a local (or remote) home interface
return local (or remote) component interfaces. An EJB component may have both remote and local
interfaces, even if normally only one type of interface is provided. If an Entity Bean is the target of a
container-managed relationship (refer to EJB 2.0 persistence), then it must have local interfaces.

These elements are described in the following sections.

An Entity Bean represents persistent data. It is an object view of an entity stored in a relational
database. The persistence of an Entity Bean can be handled in two ways:

+ Container-Managed Persistence: the persistence is implicitly managed by the container; no code
for data access is supplied by the bean provider. The bean’s state will be stored in a relational
database according to a mapping description delivered within the deployment descriptor (CMP 1.1)
or according to an implicit mapping (CMP 2.0).



80 Chapter 8. Developing Entity Beans

+ Bean-Managed Persistence: the bean provider writes the database access operations (JDBC code)
in the methods of the enterprise bean that are specified for data creation, load, store, retrieval, and
remove operations (e jbCreate, ejbLoad, ejbStore, e jbFind..., e jbRemove).

Currently, the platform handles persistence in relational storage systems through the JDBC interface.
For both container-managed and bean-managed persistence, JDBC connections are obtained from an
object provided at the EJB server level, the DataSource. The DataSource interface is defined in the
JDBC 2.0 standard extensions (see http://java.sun.com/products/jdbc/). A DataSource object identifies
a database and a means to access it via JDBC (a JDBC driver). An EJB server may propose access to
several databases and thus provides the corresponding DataSource objects. DataSources are described
in more detail in Chapter 4 Configuring JDBC DataSources.

8.2. The Home Interface

In addition to “home business methods,” the Home interface is used by any client application to cre-
ate, remove, and retrieve instances of the Entity Bean. The bean provider needs to provide only the
desired interface; the container will automatically provide the implementation. If it is remote, the in-
terface must extend the javax.ejb.EJBHome interface; if it is local, the interface must extend the
javax.ejb.EJBLocalHome interface. The methods of a remote home interface must follow the rules
for Java RMI. The signatures of the create and £ind... methods should match the signatures of the
ejbCreate and ejbFind... methods that will be provided later in the Enterprise Bean implementa-
tion class (the same number and types of arguments, but different return types).

8.2.1. create Methods

+ The return type is the Enterprise Bean’s component interface.

+ The exceptions defined in the throws clause must include the exceptions defined for the
ejbCreate and ejbPostCreate methods, and must include javax.ejb.CreateException and
java.rmi.RemoteException (the latter is only for a remote interface).

8.2.2. remove Methods

+ The interfaces for these methods must not be defined—they are inherited from EJBHome or
EJBLocalHome.

+ The method is void remove, taking as an argument the primary key object or the handle (for a
remote interface).

+ The exceptions defined in the throws clause should be javax.ejb.RemoveException and
java.rmi.RemoteException for a remote interface.

+ The exceptions defined in the throws clause should be javax.ejb.RemoveException and
java.ejb.EJBException for alocal interface.

8.2.3. finder Methods

Finder methods are used to search for an EJB object or a collection of EJB objects. The arguments
of the method are used by the Entity Bean implementation to locate the requested entity objects.
For bean-managed persistence, the bean provider is responsible for developing the corresponding
ejbFinder methods in the bean implementation. For container-managed persistence, the bean provider
does not write these methods; they are generated at deployment time by the platform tools; the de-
scription of the method is provided in the deployment descriptor, as defined in Section 8.7 Configuring



Chapter 8. Developing Entity Beans 81

Database Access for Container-Managed Persistence. In the Home interface, the finder methods must
adhere to the following rules:

+ They must be named find<method> (for example, findLargeAccounts).
+ The return type must be the Enterprise Bean’s component interface, or a collection thereof.

+ The exceptions defined in the throws clause must include the exceptions defined for
the matching ejbFind method, and must include javax.ejb.FinderException and
java.rmi.RemoteException (the latter, only for a remote interface).

At least one of these methods is mandatory: findByPrimaryKey, which takes as argument a primary
key value and returns the corresponding EJB object.

8.2.4. home Methods

Home methods are methods that the bean provider supplies for business logic that is not specific to an
Entity Bean instance.

+ The throws clause of every home method on the remote home interface includes the
java.rmi.RemoteException

+ Home methods implementation is provided by the bean developer in the bean implementation class
as public static methods named e jbHome <METHOD_NAME> (. . .), Wwhere <METHOD_NAME>> is the
name of the method in the home interface.

8.2.5. Home Interface Example

The Account Bean example, provided with the platform examples, is used to illustrate these concepts.
The state of an Entity Bean instance is stored in a relational database, where the following table should
exist, if CMP 1.1 is used:

create table ACCOUNT (ACCNO integer primary key,
CUSTOMER varchar (30),
BALANCE number (15,4));

public interface AccountHome extends EJBHome {
public Account create (int accno, String customer, double balance)

throws RemoteException, CreateException;

public Account findByPrimaryKey (Integer pk)
throws RemoteException, FinderException;

public Account findByNumber (int accno)
throws RemoteException, FinderException;

public Enumeration findLargeAccounts (double val)
throws RemoteException, FinderException;

}



82 Chapter 8. Developing Entity Beans

8.3. The Component Interface

8.3.1. Business Methods

The Component Interface is the client’s view of an instance of the Entity Bean. It is what is returned
to the client by the Home interface after creating or finding an Entity Bean instance. This
interface contains the business methods of the Enterprise Bean. The interface must extend the
javax.ejb.EJBObject interface if it is remote, or the javax.ejb.EJBLocalObject if it is
local. The methods of a remote component interface must follow the rules for Java RMI. For
each method defined in this component interface, there must be a matching method of the bean
implementation class (same arguments number and types, same return type, same exceptions except
for RemoteException).

8.3.1.1. Component Interface Example

public interface Account extends EJBObject ({
public double getBalance () throws RemoteException;
public void setBalance (double d) throws RemoteException;
public String getCustomer () throws RemoteException;
public void setCustomer (String c) throws RemoteException;
public int getNumber () throws RemoteException;

8.4. The Primary Key Class

The Primary Key class is necessary for entity beans only. It encapsulates the fields representing the
primary key of an Entity Bean in a single object. If the primary key in the database table is composed
of a single column with a basic data type, the simplest way to define the primary key in the bean is
to use a standard Java class (for example, java.lang.Integer or java.lang.String). This must
have the same type as a field in the bean class. It is not possible to define it as a primitive field (for
example, int, float or boolean). Then, it is only necessary to specify the type of the primary key in the
deployment descriptor:

<prim-key-class>java.lang.Integer</prim-key-class>
And, for container-managed persistence, the field which represents the primary key:
<primkey-field>accno</primkey-field>

The alternative way is to define its own Primary Key class, described as follows:

The class must be serializable and must provide suitable implementation of the hashcode () and
equals (Object) methods.

For container-managed persistence, the following rules apply:

+ The fields of the primary key class must be declared as public.
+ The primary key class must have a public default constructor.

+ The names of the fields in the primary key class must be a subset of the names of the container-
managed fields of the Enterprise Bean.



Chapter 8. Developing Entity Beans 83

8.4.1. Primary Key Class Example

public class AccountBeanPK implements java.io.Serializable {
public int accno;
public AccountBeanPK (int accno) { this.accno = accno; }
public AccountBeanPK() { }

public int hashcode() { return accno; }
public boolean equals (Object other) {

}

8.4.1.1. Special Case: Automatic Generation of Primary Keys Field

There are two ways to manage automatic primary keys with JOnAS. The first method is closer to the
EJB specification (that is, an automatic PK is a hidden field, the type of which is not even known
by the application). In the second method, the idea is to declare a typical PK CMP field of the type
java.lang.Integer as automatic. These two cases are described below.

8.4.1.1.1. Method 1: Standard Automatic Primary Keys (from JOnAS 4.0.0)

In this case, an automatic PK is a hidden field, the type of which is not known by the application.
All that is necessary is to stipulate in the standard deployment descriptor that this EJB has an auto-
matic PK; you do this by specifying java.lang.0Object as primkey-class. The primary key will be
completely hidden from the application (no CMP field, no getter/setter method). This is valid for both
CMP 2.x and CMP1 entity beans. The container will create an internal CMP field and generate its
value when the Entity Bean is created.

8.4.1.1.1.1. Method 1 Example:
Standard deployment descriptor:

<entity>

<ejb-name>AddressEJB<L/ejb-name>
<local-home>com.titan.address.AddressHomeLocal</local-home>
<local>com.titan.address.AddressLocal</local>
<ejb-class>com.titan.address.AddressBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Object</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Cmp2_Address</abstract-schema-name>
<cmp-field><field-name>street</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<cmp-field><field-name>zip</field-name></cmp-field>

Address Bean Class extract:

// Primary key is not explicitly initialized during ejbCreate method
// No cmp field corresponds to the primary key
public Integer ejbCreateAddress (String street, String city,
String state, String zip ) throws javax.eJjb.CreateException ({

setStreet (street);

setCity (city);

setState (state);

setZip(zip);



84 Chapter 8. Developing Entity Beans

return null;

}

If nothing else is specified and the JOnAS default CMP 2 database mapping is used, the JOnAS
container generates a database column with the name JPK_ to handle this PK. However, it is possible
to specify in the JOnAS-specific Deployment Descriptor the name of the column that will be used
to store the PK value in the table. You can do this as follows using the specific <automatic-pk-field-
name>> element (this technique is necessary for CMP2 legacy and for CMP1):

JOnAS-specific deployment descriptor:

< jonas-ejb-jar xmlns="http://www.objectweb.org/jonas/ns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.objectweb.org/jonas/ns
http://www.objectweb.org/jonas/ns/jonas-ejb-jar_4_0.xsd" >
<Jjonas—entity>
<ejb-name>AddressEJB<L/ejb-name>
< jdbc-mapping>
<Jjndi-name>jdbc_1</jndi-name>
<automatic-pk-field-name>FieldPkAuto</automatic-pk-field-name>
</jdbc-mapping>
</Jjonas-entity>

8.4.1.1.2. Method 2: CMP Field as Automatic Primary Key (from JOnAS 3.3.x)

The idea here is to declare a typical PK CMP field of type java.lang.Integer as automatic.
By doing this, the field will no longer appear in create methods and its value will be automatically
generated by the container at the EJB instance-creation time. However, it is still a cmp field, with
getter/setter methods, and is accessible from the application.

8.4.1.1.2.1. Method 2 Example:

In the standard deployment descriptor, there is a typical primary key definition:

<entity>
<prim-key-class>java.lang.Integer</prim-key-class>
<cmp-field><field-name>id</field-name></cmp-field>
<primkey-field>id</primkey-field>

In the JOnAS-specific deployment descriptor, specify that this PK is automatic:

<Jjonas—entity>

< jdbc-mapping>
<automatic-pk>true</automatic-pk>



Chapter 8. Developing Entity Beans 85

8.5. The Enterprise Bean Class

The EJB implementation class implements the bean’s business methods of the component interface
and the methods dedicated to the EJB environment, the interface of which is explicitly defined in
the EJB specification. The class must implement the javax.ejb.EntityBean interface, must be
defined as public, cannot be abstract for CMP 1.1, and must be abstract for CMP 2.0 (in this case,
the abstract methods are the get and set accessor methods of the bean’s cmp and cmr fields). Following
is a list of the EJB-environment dedicated methods that the EJB provider must develop.

The first set of methods are those corresponding to the create and find methods of the Home interface:

* public PrimaryKeyClass ejbCreate(...);

This method is invoked by the container when a client invokes the corresponding create operation
on the enterprise Bean’s home interface. The method should initialize instance’s variables from
the input arguments. The returned object should be the primary key of the created instance. For
bean-managed persistence, the bean provider should develop here the JDBC code to create the
corresponding data in the database. For container-managed persistence, the container will perform
the database insert after the ejbCreate method completes and the return value should be null.

+ public void ejbPostCreate (. . .);

There is a matching ejbPostCreate method (same input parameters) for each ejbCreate method. The
container invokes this method after the execution of the matching ejbCreate(...) method. During the
ejbPostCreate method, the object identity is available.

+ public <PrimaryKeyClass or Collection> ejbFind<method> (...); // for bean
managed persistence only

The container invokes this method on a bean instance that is not associated with any particular
object identity (some kind of class method ...) when the client invokes the corresponding method
on the Home interface. The implementation uses the arguments to locate the requested object(s)
in the database and returns a primary key (or a collection thereof). Currently, collections will be
represented as java.util.Enumeration objects or java.util.Collection. The mandatory
FindByPrimaryKey method takes as argument a primary key type value and returns a primary
key object (it verifies that the corresponding entity exists in the database). For container-managed
persistence, the bean provider does not have to write these finder methods; they are generated
at deployment time by the EJB platform tools. The information needed by the EJB platform for
automatically generating these finder methods should be provided by the bean programmer. The
EJB 1.1 specification does not specify the format of this finder method description; for Jonas,
the CMP 1.1 finder methods description should be provided in the JOnAS-specific deployment
descriptor of the Entity Bean (as an SQL query). Refer to Section 8.7 Configuring Database Access
for Container-Managed Persistence. The EJB 2.0 specification defines a standard way to describe
these finder methods, that is, in the standard deployment descriptor, as an EJB-QL query. Also
refer to Section 8.7 Configuring Database Access for Container-Managed Persistence. Then, the
methods of the javax.ejb.EntityBean interface must be implemented:

« public void setEntityContext (EntityContext ic);

Used by the container to pass a reference to the EntityContext to the bean instance. The container
invokes this method on an instance after the instance has been created. Generally, this method is
used to store this reference in an instance variable.

« public void unSetEntityContext () ;

Unset the associated entity context. The container calls this method before removing the instance.
This is the last method the container invokes on the instance.

« public void ejbActivate () ;

The container invokes this method when the instance is taken out of the pool of available in-
stances to become associated with a specific EJB object. This method transitions the instance to
the ready state.



86

Chapter 8. Developing Entity Beans

public void ejbPassivate () ;

The container invokes this method on an instance before the instance becomes dissociated with
a specific EJB object. After this method completes, the container will place the instance into the
pool of available instances.

public void ejbRemove () ;

This method is invoked by the container when a client invokes a remove operation on the Enter-
prise Bean. For entity beans with bean-managed persistence, this method should contain
the JDBC code to remove the corresponding data in the database. For container-managed
persistence, this method is called before the container removes the entity representation in
the database.

public void ejbLoad () ;

The container invokes this method to instruct the instance to synchronize its state by loading it
from the underlying database. For bean-managed persistence, the EJB provider
should code at this location the JDBC statements for reading the data in the database. For
container-managed persistence, loading the data from the database will be done
automatically by the container just before ejbLoad is called, and the ejbLoad method should
only contain some “after loading calculation statements.”

public void ejbStore () ;

The container invokes this method to instruct the instance to synchronize its state by storing
it to the underlying database. For bean-managed persistence, the EJB provider should
code at this location the JDBC statements for writing the data in the database. For entity beans
with container-managed persistence, this method should only contain some “pre-store
statements,” since the container will extract the container-managed fields and write them to the
database just after the ejbStore method call.

8.5.1. Enterprise Bean Class Example

The following examples are for container-managed persistence with EJB 1.1 and EJB 2.0. For bean-
managed persistence, refer to the examples delivered with your specific platform.

8.5.1.1.CMP 1.1

package eb;

import java.rmi.RemoteException;

import javax.ejb.EntityBean;

import javax.ejb.EntityContext;

import javax.ejb.ObjectNotFoundException;
import javax.ejb.RemoveException;

import javax.ejb.EJBException;

public class AccountImplBean implements EntityBean {

// Keep the reference on the EntityContext
protected EntityContext entityContext;

// Object state

public Integer accno;
public String customer;
public double balance;

public Integer ejbCreate(int val_accno, String val_customer,
double val_balance) {



Chapter 8. Developing Entity Beans

// Init object state

accno = new Integer (val_accno);
customer = val_customer;
balance = val_balance;

return null;

}

public void ejbPostCreate (int val_accno, String val_customer,
double val_balance) {
// Nothing to be done for this simple example.

}

public void ejbActivate () {
// Nothing to be done for this simple example.
}

public void ejbLoad() {
// Nothing to be done for this simple example,
// in implicit persistence.

public void ejbPassivate () {
// Nothing to be done for this simple example.

public void ejbRemove () {
// Nothing to be done for this simple example,
// in implicit persistence.

}

public void ejbStore() {
// Nothing to be done for this simple example,
// in implicit persistence.

}

public void setEntityContext (EntityContext ctx) {
// Keep the entity context in object
entityContext = ctx;

}

public void unsetEntityContext () {
entityContext = null;
}

public double getBalance() {
return balance;

}

public void setBalance (double d) {
balance = balance + d;

}

public String getCustomer () {
return customer;

}
public void setCustomer (String c) {
customer = c;

}

public int getNumber () {



88 Chapter 8. Developing Entity Beans

return accno.intValue();

8.5.1.2. CMP 2.0

import java.rmi.RemoteException;

import javax.ejb.EntityBean;

import javax.ejb.EntityContext;

import javax.ejb.ObjectNotFoundException;
import javax.ejb.RemoveException;

import javax.ejb.CreateException;

import javax.ejb.EJBException;

public abstract class AccountImpl2Bean implements EntityBean {
// Keep the reference on the EntityContext
protected EntityContext entityContext;
/*==== Abstract set and get accessors for cmp fields ====%*/

public abstract String getCustomer();
public abstract void setCustomer (String customer);

public abstract double getBalance();
public abstract void setBalance (double balance);

public abstract int getAccno();
public abstract void setAccno (int accno);

/* ejbCreate methods */

public Integer ejbCreate(int val_accno,
String val_customer, double val_balance)
throws CreateException {

// Init object state
setAccno (val_accno) ;
setCustomer (val_customer) ;
setBalance (val_balance);
return null;

}

public void ejbPostCreate (int val_accno, String val_customer,
double val_balance) {
// Nothing to be done for this simple example.

= javax.ejb.EntityBean implementation =

public void ejbActivate() {
// Nothing to be done for this simple example.

public void ejbLoad() {
// Nothing to be done for this simple example,
// in implicit persistence.



Chapter 8. Developing Entity Beans 89

public void ejbPassivate() {
// Nothing to be done for this simple example.

public void ejbRemove () throws RemoveException {
// Nothing to be done for this simple example,
// in implicit persistence.

}

public void ejbStore() {
// Nothing to be done for this simple example,
// in implicit persistence.

}
public void setEntityContext (EntityContext ctx) {

// Keep the entity context in object
entityContext = ctx;

}

public void unsetEntityContext () {
entityContext = null;
}

/**
* Business method to get the Account number
*/

public int getNumber () {

return getAccno();

}

8.6. Writing Database Access Operations (Bean-Managed Persistence)

For bean-managed persistence, data access operations are developed by the bean provider
using the JDBC interface. However, getting database connections must be obtained through the
javax.sql.DataSource interface on a datasource object provided by the EJB platform. This
is mandatory since the EJB platform is responsible for managing the connection pool and for
transaction management. Thus, to get a JDBC connection, in each method performing database
operations, the bean provider must:

+ Call the getConnection (. ..) method of the DataSource object to obtain a connection to perform
the JDBC operations in the current transactional context (if there are JDBC operations)

+ Call the close () method on this connection after the database access operations so that the con-
nection can be returned to the connection pool (and be dissociated from the potential current trans-
action).

A method that performs database access must always contain the getConnection and close statements,
as follows:

public void doSomethingInDB (...) {
conn = dataSource.getConnection();
// Database access operations



90 Chapter 8. Developing Entity Beans

conn.close () ;

}

A DataSource object associates a JDBC driver with a database (as an ODBC datasource). It is created
and registered in JNDI by the EJB server at launch time (refer also to Chapter 4 Configuring JDBC
DataSources).

A DataSource object is a resource manager connection factory for java.sql.Connection objects,
which implements connections to a database management system. The Enterprise Bean code refers
to resource factories using logical names called Resource manager connection factory references.
The resource manager connection factory references are special entries in the Enterprise Bean envi-
ronment. The bean provider must use resource manager connection factory references to obtain the
datasource object as follow:

+ Declare the resource reference in the standard deployment descriptor using a resource-ref ele-
ment.

+ Look up the datasource in the Enterprise Bean environment using the JNDI interface (refer to
Chapter 12 Enterprise Bean Environment).

The deployer binds the resource manager connection factory references to the actual resource factories
that are configured in the server. This binding is done in the JOnAS-specific deployment descriptor
using the jonas-resource element.

8.6.1. Database Access Operation Example

The declaration of the resource reference in the standard deployment descriptor looks like the follow-
ing:

<resource-ref>
<res-ref-name>jdbc/AccountExplDs</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The <res-auth> element indicates which of the two resource manager authentication approaches is
used:

+ Container: the deployer sets up the sign-on information.

+ Bean: the bean programmer should use the getConnection method with user and password param-
eters.

The JOnAS-specific deployment descriptor must map the environment JNDI name of the resource to
the actual JNDI name of the resource object managed by the EJB server. This is done in the <jonas-
resource> element.

<Jjonas-entity>
<ejb-name>AccountExpl</ejb-name>
<Jjndi-name>AccountExplHome</jndi-name>
<Jjonas-resource>
<res-ref-name>jdbc/AccountExplDs</res-ref-name>
< jndi-name>jdbc_1</jndi-name>
</Jjonas-resource>
</jonas—-entity>

The ejbStore method of the same Account example with bean-managed persistence is shown in the
following example. It performs JDBC operations to update the database record representing the state
of the Entity Bean instance. The JDBC connection is obtained from the datasource associated with the



Chapter 8. Developing Entity Beans 91

bean. This datasource has been instantiated by the EJB server and is available for the bean through its
resource reference name, which is defined in the standard deployment descriptor.

In the bean, a reference to a datasource object of the EJB server is initialized:
it = new InitialContext();
ds = (DataSource)it.lookup ("java:comp/env/jdbc/AccountExplDs") ;

Then, this datasource object is used in the implementation of the methods performing JDBC opera-
tions, such as ejbStore, as illustrated in the following:

public void ejbStore
Connection conn = null;
PreparedStatement stmt = null;
try { // get a connection
conn = ds.getConnection();
// store Object state in DB
stmt = conn.prepareStatement ("update account
set customer=?,balance=? where accno=?");
stmt.setString(l, customer);
stmt.setDouble (2, balance);
Integer pk = (Integer)entityContext.getPrimaryKey();
stmt.setInt (3, pk.accno);
stmt .executeUpdate () ;
} catch (SQLException e) {
throw new javax.ejb.EJBException("Failed to store bean
to database", e);

} finally {
try f
if (stmt != null) stmt.close(); // close statement
if (conn != null) conn.close(); // release connection

} catch (Exception ignore) {}
}

Note that the close statement instruction may be important if the server is intensively accessed by many
clients performing Entity Bean access. If the statement is not closed in the finally block, since stmt is
in the scope of the method, it will be deleted at the end of the method (and the close will be implicitly
done). However, it may be some time before the Java garbage collector deletes the statement object.
Therefore, if the number of clients performing Entity Bean access is important, the DBMS may raise
a “too many opened cursors” exception (a JDBC statement corresponds to a DBMS cursor). Since
connection pooling is performed by the platform, closing the connection will not result in a physical
connection close, therefore opened cursors will not be closed. Thus, it is preferable to explicitly close
the statement in the method.

It is a good programming practice to put the JDBC connection and JDBC statement close operations
in a finally block of the try statement.

8.7. Configuring Database Access for Container-Managed Persistence

The standard way to indicate to an EJB platform that an Entity Bean has container-managed persis-
tence is to fill the <persistence-type> tag of the deployment descriptor with the value "con-
tainer," and to fill the <cmp-field> tag of the deployment descriptor with the list of container-
managed fields (the fields that the container will have in charge to make persistent). The CMP version
(1.x or 2.x) should also be specified in the <cmp-version> tag. In the textual format of the deployment
descriptor, this is represented by the following lines:

<persistence-type>container</persistence-type>



92 Chapter 8. Developing Entity Beans

<cmp-version>1l.x</cmp-version>

<cmp-field>
<field-name>fieldOne</field-name>

</cmp-field>

<cmp-field>
<field-name>fieldTwo</field-name>

</cmp-field>

With container-managed persistence the programmer need not develop the code for access-
ing the data in the relational database; this code is included in the container itself (generated by the
platform tools). However, for the EJB platform to know how to access the database and which data to
read and write in the database, two types of information must be provided with the bean:

« First, the container must know which database to access and how to access it. To do this, the only
required information is the name of the DataSource that will be used to get the JDBC connection.
For container-managed persistence, only one DataSource per bean should be used.

+ Then, it is necessary to know the mapping of the bean fields to the underlying database (which table,
which column). For CMP 1.1 or CMP 2.0, this mapping is specified by the deployer in the JOnAS-
specific deployment descriptor. Note that for CMP 2.0, this mapping may be entirely generated by
JOnAS.

The EJB specification does not specify how this information should be provided to the EJB platform
by the bean deployer. Therefore, what is described in the remainder of this section is specific to JOnAS.

For CMP 1.1, the bean deployer is responsible for defining the mapping of the bean fields to the
database table columns. The name of the DataSource can be set at deployment time, since it depends
on the EJB platform configuration. This database configuration information is defined in the JOnAS-
specific deployment descriptor via the jdbc-mapping element. The following example defines the
mapping for a CMP 1.1 Entity Bean:

< jdbc-mapping>
<jndi-name>jdbc_1</jndi-name>
< jdbc-table-name>accountsample</jdbc-table-name>
<cmp-field-jdbc-mapping>
<field-name>mAccno</field-name>
<jdbc-field-name>accno</jdbc-field-name>
</cmp-field-jdbc-mapping>
<cmp-field-jdbc-mapping>
<field-name>mCustomer</field-name>
< jdbc-field-name>customer</jdbc-field-name>
</cmp-field-jdbc-mapping>
<cmp-field-jdbc-mapping>
<field-name>mBalance</field-name>
<Jjdbc-field-name>balance</jdbc-field-name>
</cmp-field-jdbc-mapping>
</jdbc-mapping>

jdbc_1 is the INDI name of the DataSource object identifying the database. accountsample is the
name of the table used to store the bean instances in the database. mAccno, mCustomer, and
mBalance are the names of the container-managed fields of the bean to be stored in the accno,
customer, and balance columns of the accountsample table. This example applies to
container-managed persistence. For bean-managed persistence, the database mapping
does not exist.

For a CMP 2.0 Entity Bean, only the jndi-name element of the jdbc-mapping is mandatory, since
the mapping may be generated automatically:

< jdbc-mapping>
<jndi-name>jdbc_1</jndi-name>



Chapter 8. Developing Entity Beans 93

</jdbc-mapping>
<cleanup>create</cleanup>

For an explicit mapping definition, refer to Section 8.11 JOnAS Database Mapping (Specific Deploy-
ment Descriptor).

For a CMP 2.0 Entity Bean, the JOnAS-specific deployment descriptor contains an additional element,
cleanup, at the same level as the jdbc-mapping element, which can have one of the following
values:

removedata

At bean loading time, the content of the tables storing the bean data is deleted.

removeall

At bean loading time, the tables storing the bean data are dropped (if they exist) and created.

none

Do nothing.

create

Default value (if the element is not specified), at bean loading time, the tables for storing the bean
data are created if they do not exist.

For CMP 1.1, the jdbc-mapping element can also contain information defining the behavior
of the implementation of a find<method> method (that is, the ejbFind<method>
method, that will be generated by the platform tools). This information is represented by the
finder-method-jdbc-mapping element.

For each finder method, this element provides a way to define an SQL WHERE clause that will be used
in the generated finder method implementation to query the relational table storing the bean entities.
Note that the table column names should be used, not the bean field names. Example:

< finder-method-jdbc-mapping>
< jonas-method>
<method-name>findLargeAccounts</method-name>
</jonas-method>
< jdbc-where-clause>where balance >
?</jdbc-where-clause>
</finder-method-jdbc-mapping>

The previous finder method description will cause the platform tools to generate an implementation
of ejbFindLargeAccount(double arg) that returns the primary keys of the Entity Bean objects corre-
sponding to the tuples returned by the select ... from Account where balance > 2, where
*?” will be replaced by the value of the first argument of the findLargeAccount method. If several *?’
characters appear in the provided WHERE clause, this means that the finder method has several argu-
ments and the *?” characters will correspond to these arguments, adhering to the order of the method
signature.

In the WHERE clause, the parameters can be followed by a number, which specifies the method param-
eter number that will be used by the query in this position.

Example: The WHERE clause of the following finder method can be:
Enumeration findByTextAndDateCondition (String text, java.sgl.Date date)

WHERE (description like ?1 OR summary like ?1) AND (2?2 > date)



94 Chapter 8. Developing Entity Beans

Note that a <finder-method-jdbc-mapping> element for the findByPrimaryKey method is
not necessary, since the meaning of this method is known.

Additionally, note that for CMP 2.0, the information defining the behavior of the implementation of a
find<method> method is located in the standard deployment descriptor, as an EJB-QL query (that
is, this is not JOnAS-specific information). The same finder method example in CMP 2.0:

<query>
<query-method>
<method-name>findLargeAccounts</method-name>
<method-params>
<method-param>double</method-param>
< /method-params>
</query-method>
<ejb-gql>SELECT OBJECT (o) FROM accountsample o WHERE o.balance
> ?1</ejb-gl>
</query>

8.8. Using CMP2.0 Persistence

The following sections highlight the main differences between CMP as defined in EJB 2.0 specifi-
cation (called CMP2.0) and CMP as defined in EJB 1.1 specification (called CMP1.1). Major new
features in the standard development and deployment of CMP2.0 Entity Beans are listed (compar-
ing them to CMP1.1), along with JOnAS-specific information. Mapping CMP2.0 Entity Beans to the
database is described in detail. Note that the database mapping can be created entirely by JOnAS,
in which case the JOnAS-specific deployment descriptor for an Entity Bean should contain only the
datasource and the element indicating how the database should be initialized.

8.9. Standard CMP2.0 Aspects

This section briefly describes the new features available in CMP2.0 as compared to CMP 1.1, and how
these features change the development of Entity Beans.

8.9.1. Entity Bean Implementation Class

The EJB implementation class:

+ Implements the bean’s business methods of the component interface

+ Implements the methods dedicated to the EJB environment (the interface of which is explicitly
defined in the EJB specification)

+ Defines the abstract methods representing both the persistent fields (cmp-fields) and the relationship
fields (cmr-fields).

The class must implement the javax.ejb.EntityBean interface, be defined as public, and be
abstract (which is not the case for CMP1.1, where it must not be abst ract). The abstract methods
are the get and set accessor methods of the bean cmp and cmr fields. Refer to the examples and
details in Chapter 8 Developing Entity Beans.



Chapter 8. Developing Entity Beans 95

8.9.2. Standard Deployment Descriptor

The standard way to indicate to an EJB platform that an Entity Bean has container-managed
persistence is to fill the <persistence-type> tag of the deployment descriptor with the value
container, and to fill the <cmp-field> tags of the deployment descriptor with the list of
container-managed fields (the fields that the container will have in charge to make persistent) and the
<cmr-field> tags identifying the relationships. The CMP version (1.x or 2.x) should also be
specified in the <cmp-version> tag. This is represented by the following lines in the deployment
descriptor:

<persistence-type>container</persistence-type>
<cmp-version>1.x</cmp-version>
<cmp-field>

<field-name>fieldOne</field-name>
</cmp-field>
<cmp-field>

<field-name>fieldTwo</field-name>
</cmp-field>

AWarning

To run CMP1.1-defined Entity Beans on an EJB2.0 platform, such as JOnAS 3.x, you must introduce
the <cmp-version> element in your deployment descriptors, because the default cmp-version value
(if not specified) is 2.x.

Note that for CMP 2.0, the information defining the behavior of the implementation of a
find<method> method is located in the standard deployment descriptor as an EJB-QL query (this
is not JOnAS-specific information). For CMP 1.1, this information is located in the JOnAS-specific
deployment descriptor as an SQL WHERE clause specified in a <finder-method-jdbc-mapping>
element.

The following example shows a finder method in CMP 2.0 for a findLargeAccounts (double
val) method defined on the Account Entity Bean of the JOnAS eb example.

<query>
<query-method>
<method-name>findLargeAccounts</method-name>
<method-params>
<method-param>double</method-param>
< /method-params>
</query-method>
<ejb-gl>SELECT OBJECT (o) FROM accountsample o
WHERE o.balance > ?1</ejb-ql>
</query>

8.10. JOnAS Database Mappers

For implementing the EJB 2.0 persistence (CMP2.0), JOnAS relies on the JORM framework (see
http://www.objectweb.org/jorm/index.html). JORM itself relies on JOnAS DataSources (specified
in DataSource properties files) for connecting to the actual database. JORM must adapt its object-
relational mapping to the underlying database, for which it makes use of adapters called mappers.



96 Chapter 8. Developing Entity Beans

Thus, for each type of database (and more precisely for each JDBC driver), the corresponding map-
per must be specified in the DataSource. This is the purpose of the datasource.mapper prop-
erty of the DataSource properties file. Note that all JOnAS-provided DataSource properties files (in
$JONAS_ROOT/conf) already contain this property with the correct mapper.

For the JORM database mapper datasource.mapper, the possible values are:

+ rdb: generic mapper (JDBC standard driver ...)

+ rdb. firebird: Firebird

+ rdb.mckoi: McKoi DB

+ rdb.mysgl: MySQL

+ rdb.oracle8: Oracle 8 and lesser versions

+ rdb.oracle: Oracle 9

+ rdb.postgres: PostgreSQL (version 7.2 or greater)
+ rdb.sapdb: SAP DB

+ rdb.sqglserver: MS SQL Server

+ rdb.sybase: Sybase

Contact the JOnAS team (jonas-team @objectweb.org) to obtain a mapper for other databases.

The container code generated at deployment (GenIC or EJB-JAR Ant task) is dependent on this map-
per. It is possible to deploy (generate container code) a bean for several mappers in order to change
the database (that is, the DataSource file) without redeploying the bean. These mappers should be
specified as the mappernames argument of the GenlC command or as the mappernames attribute of
the JOnAS ANT EJB-JAR task. The value is a comma-separated list of mapper names for which the
container classes will be generated. This list of mapper names corresponds to the list of potential
databases upon which you can deploy your Entity Beans. For example, to deploy Entity Beans so that
they can be used on either Oracle or PostgreSQL, run GenIC as:

GenIC -mappernames rdb.oracle,rdb.postgres eb.jar
The following is the same example in an Ant build.xml file:

<target name="deploy"
description="Build and deploy the ejb-jars"
depends="compile>
<ejbjar naming="directory"

<Jjonas destdir="${ejbjars.dir}"
jonasroot="${jonas.root}"
orb="${orb}"
jarsuffix=".jar"
secpropag="yes"
keepgenerated="true"
mappernames="${mapper.names}"
additionalargs="${genicargs}">

</jonas>

</ejbjar>
</target>

that have the following in build.properties:



Chapter 8. Developing Entity Beans 97

# mappers for entity CMP2
mapper.names rdb.oracle, rdb.postgres

8.11. JOnAS Database Mapping (Specific Deployment Descriptor)

You can specify the mapping to the database of Entity Beans and their relationships in the
JOnAS-specific deployment descriptor, in jonas-entity elements, and in jonas-ejb-relation
elements. Since JOnAS is able to generate the database mapping, all the elements of the
JOnAS-specific deployment descriptor defined in this section (which are sub-elements of
jonas-entity or jonas—ejb-relation) are optional, except those for specifying the datasource
and the initialization mode (that is, the jndi-name of jdbc-mapping and cleanup). The default
values of these mapping elements, provided in this section, define the JOnAS-generated database
mapping.

8.11.1. Specifying and Initializing the Database

To specify the database within which a CMP 2.0 Entity Bean is stored, use the jndi-name element
of the jdbc-mapping. This is the JNDI name of the DataSource representing the database storing
the Entity Bean.

< jdbc-mapping>
<jndi-name>jdbc_1</jndi-name>
</jdbc-mapping>

For a CMP 2.0 Entity Bean, the JOnAS-specific deployment descriptor contains an additional element,
cleanup, to be specified before the jdbc-mapping element. The cleanup element can have one of
the following values:

removedata

At bean loading time, delete the content of the tables storing the bean data

removeall

At bean loading time, drop the tables storing the bean data (if they exist) and re-create them

none

Do nothing

create

Default value (if the element is not specified). At bean loading time, create the tables for storing
the bean data (if they do not exist).

It may be useful for testing purposes to delete the database data each time a bean is loaded. To do
this, the part of the JOnAS-specific deployment descriptor related to the Entity Bean may look like
the following:

<cleanup>removedata</cleanup>
< jdbc-mapping>

<Jjndi-name>jdbc_1</jndi-name>
</jdbc-mapping>



98 Chapter 8. Developing Entity Beans

8.11.2. CMP fields mapping

Mapping CMP fields in CMP2.0 is similar to that of CMP1.1, but in CMP2.0 it is also possible to
specify the SQL type of a column. Usually this SQL type is used if JOnAS creates the table (the
create value of the cleanup element) and if the JORM SQL type is not appropriate.

8.11.2.1. Standard Deployment Descriptor

<entity>

<ejb-name>A</ejb-name>

<cmp-field>
<field-name>idA</field-name>

</cmp-field>

<cmp-field>
<field-name>f</field-name>

</cmp-field>

8.11.2.2. Database Mapping

tA
c_idA c_f

8.11.2.3. JOnAS Deployment Descriptor

<Jjonas—entity>
<ejb-name>A</ejb-name>
< jdbc-mapping>
< jndi-name>jdbc_1</jndi-name>
< jdbc-table-name>t_A</jdbc-table-name>
<cmp-field-jdbc-mapping>
<field-name>idA</field-name>
<jdbc-field-name>c_idA</jdbc-field-name>
</cmp-field-jdbc-mapping>
<cmp-field-jdbc-mapping>
<field-name>f</field-name>
<jdbc-field-name>c_£f</jdbc-field-name>
<sgl-type>varchar (40) </sgql-type>
</cmp-field-jdbc-mapping>
</jdbc-mapping>



Chapter 8. Developing Entity Beans 99

jndi-name Mandatory

jdbc-table-name Optional. Default value is the upper-case CMP2
abstract-schema-name, or the CMP1 EJB-name, suffixed by "_".

cmp-field-jdbc-mapping | Optional.

jdbc-field-name Optional. Default value is the field-name suffixed by "_". "idA_"
and "f_" in the example.

sqgl-type Optional. Default value defined by JORM.

Table 8-1. CMP fields mapping: Default values

8.11.3. CMR fields mapping to primary-key-fields (simple pk)
8.11.3.1. 1-1 unidirectional relationships

8.11.8.1.1. Standard Deployment Descriptor

<entity>
<ejb-name>A</ejb-name>
<cmp-field>
<field-name>idA</field-name>
</cmp-field>
<primkey-field>idA</primkey-field>

<entity>
<ejb-name>B</ejb-name>
<cmp-field>
<field-name>idB</field-name>
</cmp-field>
<primkey-field>idB</primkey-field>

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B -—->
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
</cmr-field>
</ejb-relationship-role>




100 Chapter 8. Developing Entity Beans

<ejb-relationship-role>
<!-— B => A —->
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>

8.11.3.1.2. Database Mapping

A
c_idA cfk_idB

t B
c_idB

There is a foreign key in the table of the bean that owns the CMR field.

8.11.3.1.3. JOnAS Deployment Descriptor

<Jjonas-entity>
<ejb-name>A</ejb-name>
< jdbc-mapping>
<Jjndi-name>jdbc_1</jndi-name>
< jdbc-table-name>t_A/jdbc-table-name>
<cmp-field-jdbc-mapping>
<field-name>idA</field-name>
<jdbc-field-name>c_idA</jdbc-field-name>
</cmp-field-jdbc-mapping>
</jdbc-mapping>

<Jjonas—entity>
<ejb-name>B</ejb-name>
< jdbc-mapping>
< jndi-name>jdbc_1</jndi-name>
< jdbc-table-name>t_B/jdbc-table-name>
<cmp-field-jdbc-mapping>
<field-name>idB</field-name>
<jdbc-field-name>c_idB</jdbc-field-name>
</cmp-field-jdbc-mapping>
</jdbc-mapping>



Chapter 8. Developing Entity Beans 101

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas—-ejb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idb</foreign-key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</Jjonas-ejb-relation>

foreign-key-jdbc-name is the column name of the foreign key in the table of the source bean of
the relationship-role.

In this example, where the destination bean has a primary-key-field, it is possible to deduce that this
foreign-key-jdbc-name column is to be associated with the column of this primary-key-field in the
table of the destination bean.

jonas—ejb-relation Optional

foreign-key-jdbc-name Optional. Default value is the abstract-schema-name of the
destination bean, suffixed by “_” and by its primary-key-field.
B_idb in the example.

Table 8-2. 1-1 unidirectional relationships: Default values

8.11.3.2. 1-1 bidirectional relationships

In contrast to 1-1 unidirectional relationships, there is a CMR field in both of the beans, thus making
two types of mapping possible.

8.11.8.2.1. Standard Deployment Descriptor

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B -—->
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<!-— B => A —->
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>



102 Chapter 8. Developing Entity Beans

</relationship-role-source>
<cmr-field>
<cmr-field-name>a</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

8.11.8.2.2. Database Mapping
Two mappings are possible. One of the tables may hold a foreign key.
Case 1:

A
c_idA cfk_idB

t B
c_idB

Case 2:

A
c_idA

t B

c_idB cfk_idA

8.11.3.2.3. JOnAS Deployment Descriptor
Case 1:

< Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idb</foreign-key-jdbc-name>
< /foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</jonas-ejb-relation>



Chapter 8. Developing Entity Beans 103

< Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_ida</foreign-key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</jonas-ejb-relation>

For the default mapping, the foreign key is in the table of the source bean of the first ejb-relationship-
role of the ejb-relation. In the example, the default mapping corresponds to case 1, since the ejb-
relationship-role a2b is the first defined in the ejb-relation a—b. Then, the default values are similar to
those of the 1-1 unidirectional relationship.

8.11.3.3. 1-N unidirectional relationships

8.11.8.3.1. Standard Deployment Descriptor

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A => B ——->
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<!-— B => A ——>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>



104 Chapter 8. Developing Entity Beans

8.11.3.3.2. Database Mapping

A
c_idA

B
c_idB cfk_idA

In this case, the foreign key must be in the table of the bean which is on the "many" side of the
relationship (that is, in the table of the source bean of the relationship role with multiplicity many),
t_B.

8.11.3.3.3. JOnAS Deployment Descriptor

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_ida</foreign-key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</jonas-ejb-relation>

jonas—ejb-relation Optional

foreign-key-jdbc-name Optional. Default value is the abstract-schema-name of the
destination bean of the "one" side of the relationship (that is,
the source bean of the relationship role with multiplicity one)
suffixed by “_” and by its primary-key-field. A_ida in the
example.

Table 8-3. 1-N unidirectional relationships: Default values

8.11.3.4. 1-N bidirectional relationships

Similar to 1-N unidirectional relationships, but with a CMR field in each bean.

8.11.3.4.1. Standard Deployment Descriptor

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>



Chapter 8. Developing Entity Beans 105

<ejb-relationship-role>

<!-— A => B -——>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<!-— B => A ——>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>B</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>a</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>
</relationships>

8.11.3.4.2. Database Mapping

tA

c_idA

t B

c_idB

cfk_idA

In this case, the foreign key must be in the table of the bean that is on the “many” side of the re-
lationship (that is, in the table of the source bean of the relationship role with multiplicity many),

t_B.

8.11.3.4.3. JOnAS Deployment Descriptor

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>

<foreign-key-jdbc-name>cfk_ida</foreign-key-jdbc-name>

</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>



106 Chapter 8. Developing Entity Beans

</jonas-ejb-relation>

jonas—ejb-relation Optional

foreign-key-jdbc-name Optional. Default value is the abstract-schema-name of the
destination bean of the “one” side of the relationship (that is, the
source bean of the relationship role with multiplicity one),
suffixed by “_” and its primary-key-field. A_ida in the example.

Table 8-4. 1-N bidirectional relationships: Default values

8.11.3.5. N-1 Unidirectional Relationships

Similar to 1-N unidirectional relationships, but the CMR field is defined on the "many" side of the
relationship, that is, on the (source bean of the) relationship role with multiplicity "many."

8.11.8.5.1. Standard Deployment Descriptor

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B -——>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<!-— B => A ——>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>

8.11.3.5.2. Database Mapping

tA
c_idA cfk_idB




Chapter 8. Developing Entity Beans 107

t B
c_idB

In this case, the foreign key must be in the table of the bean which is on the "many" side of the
relationship (that is, in table of the source bean of the relationship role with multiplicity many), t_A.

8.11.3.5.3. JOnAS Deployment Descriptor

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-eJjb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idb</foreign-key-jdbc-name>
< /foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</jonas-ejb-relation>

jonas—ejb-relation Optional

foreign-key-jdbc-name Optional. Default value is the abstract-schema-name of the
destination bean of the "one" side of the relationship (that is,
the source bean of the relationship role with multiplicity one)
suffixed by “_” and by its primary-key-field. B_idb in the
example.

Table 8-5. N-1 unidirectional relationships: Default values

8.11.3.6. N-M Unidirectional Relationships

8.11.8.6.1. Standard Deployment Descriptor

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B -——>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>



108 Chapter 8. Developing Entity Beans

</ejb-relationship-role>
<ejb-relationship-role>
<!-— B => A —->
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>

8.11.3.6.2. Database Mapping

A
c_idA

t B
c_idB

tJoin_AB

cfk_idA cfk_idB

In this case, there is a join table composed of the foreign keys of each Entity Bean table.

8.11.3.6.3. JOnAS Deployment Descriptor

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<jdbc-table-name>tJoin_AB</jdbc-table-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idb</foreign-key-jdbc-name>
< /foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
<Jjonas—-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_ida</foreign-key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</Jjonas-ejb-relation>



Chapter 8. Developing Entity Beans 109

jonas—ejb-relation Optional

jdbc-table-name Optional. Default value is built from the
abstract-schema-names of the beans, separated by _. A_B in the
example.

foreign-key-jdbc-name Optional. Default value is the abstract-schema-name of the
destination bean, suffixed by “_” and by its primary-key-field.
B_idb and A_ida in the example.

Table 8-6. N-M unidirectional relationships: Default values

8.11.3.7. N-M Bidirectional Relationships
Similar to N-M unidirectional relationships, but a CMR field is defined for each bean.

8.11.8.7.1. Standard Deployment Descriptor

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B -—->
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<!-— B => A ——>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>a</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>




110 Chapter 8. Developing Entity Beans

8.11.83.7.2. Database Mapping

A
c_idA

t B
c_idB

tJoin_AB

cfk_idA | cfk_idB

In this case, there is a join table composed of the foreign keys of each Entity Bean table.

8.11.3.7.3. JOnAS Deployment Descriptor

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<jdbc-table-name>tJoin_AB</jdbc-table-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
< foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idb</foreign-key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_ida</foreign-key-jdbc-name>
< /foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</Jjonas-ejb-relation>

jonas—ejb-relation Optional

jdbc-table-name Optional. Default value is built from the
abstract-schema-names of the beans, separated by _. A_B in the
example.




Chapter 8. Developing Entity Beans 111

foreign-key-jdbc-name Optional. Default value is the abstract-schema-name of the
destination bean, suffixed by “_” and by its primary-key-field.
B_idb and A_ida in the example.

Table 8-7. CMR fields mapping to primary-key-fields: Default values

8.11.4. CMR fields Mapping to Composite Primary-Keys

In the case of composite primary keys, the database mapping should provide the capability to specify
which column of a foreign key corresponds to which column of the primary key. This is the only differ-
ence between relationships based on simple primary keys. For this reason, not all types of relationship
are illustrated below.

8.11.4.1. 1-1 Bidirectional Relationships

8.11.4.1.1. Standard Deployment Descriptor

<entity>
<ejb-name>A</ejb-name>

<cmp-field>
<field-name>idlA</field-name>

</cmp-field>

<cmp-field>
<field-name>id2A</field-name>

</cmp-field>

<entity>
<ejb-name>B</ejb-name>

<cmp-field>
<field-name>id1B</field-name>

</cmp-field>

<cmp-field>
<field-name>id2B</field-name>

</cmp-field>

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B —>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>



112

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>b</cmr-field-name>

<!-- B =>4 -——>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>One</multiplicity>

<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
<cmr-field>

</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

<cmr-field-name>a</cmr-field-name>

8.11.4.1.2. Database Mapping

Two mappings are possible, one or another of the tables may hold the foreign key.

Case 1:

Chapter 8. Developing Entity Beans

A

c_idlA

c_id2A

cfk_id1B

cfk_id2B

t B

c_id1B

c_id2B

Case 2:

A

c_idlA

c_id2A

t B

c_id1B

c_id2B

cfk_id1A

cfk_id2A




Chapter 8. Developing Entity Beans 113

8.11.4.1.3. JOnAS Deployment Descriptor
Case 1:

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idlb</foreign-key-jdbc-name>
<key-jdbc-name>c_idlb</key-jdbc—-name>
</foreign-key-jdbc-mapping>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_id2b</foreign-key-jdbc-name>
<key-jdbc-name>c_id2b</key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</Jjonas-ejb-relation>

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idla</foreign-key-jdbc-name>
<key-jdbc-name>c_idla</key-jdbc—-name>
</foreign-key-jdbc-mapping>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_id2a</foreign-key-jdbc-name>
<key-jdbc-name>c_id2a</key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</jonas-ejb-relation>

For the default mapping (values), the foreign key is in the table of the source bean of the first ejb-
relationship-role of the ejb-relation. In the example, the default mapping corresponds to case 1, since
the ejb-relationship-role a2b is the first defined in the ejb-relation a-b.

8.11.4.2. N-M Unidirectional Relationships

8.11.4.2.1. Standard Deployment Descriptor

<entity>

<ejb-name>A</ejb-name>

<cmp-field>
<field-name>idlA</field-name>

</cmp-field>

<cmp-field>
<field-name>id2A</field—-name>

</cmp-field>



114 Chapter 8. Developing Entity Beans

<entity>

<ejb-name>B</ejb-name>

<cmp-field>
<field-name>idlB</field—-name>

</cmp-field>

<cmp-field>
<field-name>id2B</field-name>

</cmp-field>

<relationships>
<ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<ejb-relationship-role>
<!-— A =>B ——>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>A</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>b</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<!-— B => A ——>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>B</ejb-name>
</relationship-role-source>
</ejb-relationship-role>
</ejb-relation>
</relationships>

8.11.4.2.2. Database Mapping

A
c_idlA |[c_id2A

t B
c_idlB |c_id2B




Chapter 8. Developing Entity Beans 115

tJoin_AB

cfk_idlA cfk_id2A ctk_id1B ctk_id2B

In this case, there is a join table composed of the foreign keys of each Entity Bean table.

8.11.4.2.3. JOnAS Deployment Descriptor

<Jjonas-ejb-relation>
<ejb-relation-name>a-b</ejb-relation-name>
<Jjdbc-table-name>tJoin_AB</Jjdbc-table-name>
<Jjonas—-ejb-relationship-role>
<ejb-relationship-role-name>a2b</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idlb</foreign-key-jdbc—-name>
<key-jdbc-name>c_idlb</key-jdbc-name>
</foreign-key-jdbc-mapping>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_id2b</foreign-key-jdbc-name>
<key-jdbc-name>c_id2b</key-jdbc—-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
<Jjonas-ejb-relationship-role>
<ejb-relationship-role-name>b2a</ejb-relationship-role-name>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_idla</foreign-key-jdbc-name>
<key-jdbc-name>c_idla</key-jdbc—-name>
</foreign-key-jdbc-mapping>
<foreign-key-jdbc-mapping>
<foreign-key-jdbc-name>cfk_id2a</foreign-key-jdbc-name>
<key-jdbc-name>c_id2a</key-jdbc-name>
</foreign-key-jdbc-mapping>
</jonas-ejb-relationship-role>
</Jjonas-ejb-relation>

8.12. Tuning a Container for Entity Bean Optimizations

JOnAS must make a compromise between scalability and performance. Towards this end, we
have introduced some tags in the JOnAS-specific deployment descriptor. For most applications,
there is no need to change the default values for all these tags. For a complete description of the
JOnAS-specific deployment descriptor, see $JONAS_ROOT/xml/jonas-ejb-jar_4_0.xsd
(http://jonas.objectweb.org/current/xml/jonas-ejb-jar_4_0.xsd).

8.12.1. Lock-Policy

The JOnAS ejb container can manage four different lock-policies:



116 Chapter 8. Developing Entity Beans

container-serialized

(Default.) The container insures the transaction serialization. This policy is suitable for most
entity beans, particularly if the bean is accessed only from this container (shared = false).

container-read-committed

This policy is also container-serialized, except that accesses of outside transaction do not interfere
with transactional accesses. This can avoid deadlocks when accessing a bean concurrently with
and without a transactional context. The only drawback of this policy is that it consumes more
memory (two instances instead of one).

container-read-uncommitted

All methods share the same instance (as with container-serialized), but there is no synchroniza-
tion. This policy is interesting for read-only entity beans or if the bean instances are very rarely
modified. It will fail if two or more threads try to modify the same instance concurrently.

database

Let the database deal with transaction isolation. With this policy, you can choose the transaction
isolation in your database. This may be interesting for applications that heavily use transactional
read-only operations, or when the shared flag is needed. It does not work with all databases, and
is expensive in terms of memory.

Note

If you deploy CMP1 beans, you should use the default policy only (container-serialized), unless your
beans are “read-only.” In this latter case, you could use container-read-uncommitted.

8.12.2. shared

This flag will be defined as true if the bean persistent state can be accessed outside the JOnAS
Server. When this flag is false, the JOnAS Server can do some optimization, such as not re-reading
the bean state before starting a new transaction. The default value is false if the lock-policy is
container-serialized,and true in the other cases.

8.12.3. prefetch

This is a CMP2-specific option. The default is false. To optimize further accesses inside the same
transaction, set the value to true to cache the data that is buffered after finder methods.

N otes

» You cannot set the prefetch option when the lock policy is container-read-uncommitted.
« The prefetch will be used only for methods that have transactional context.



Chapter 8. Developing Entity Beans 117

8.12.4. min-pool-size

This optional integer value represents the minimum instances that will be created in the pool when the
bean is loaded. This will improve bean instance create time, at least for the first instances. The default
value is 0.

8.12.5. max-cache-size

This optional integer value represents the maximum of instances in memory. The purpose of this
value is to keep JOnAS scalable. The default value is “no limit.” If you know that instances will not
be reused, you should set a very low value to save memory.

8.12.6. is-modified-method-name

To improve performance of CMP 1.1 entity beans, JOnAS implements the isModified extension. Be-
fore performing an update, the container calls a method of the bean whose name is identified in the
is-modified-method-name element of the JOnAS-specific deployment descriptor. This method is
responsible for determining if the state of the bean has been changed. By doing this, the container
determines if it must store data in the database or not.

Note

This is not required with CMP2 entity beans because the container does this automatically.

8.12.6.1. Example

The bean implementation manages a boolean isDirty and implements a method that returns the
value of the boolean isModified.

private transient boolean isDirty;
public boolean isModified() {
return isDirty;

}
The JOnAS-specific deployment descriptor directs the bean to implement an isModi fied method:

<jonas-entity>
<ejb-name>Item</ejb-name>
<is-modified-method-name>isModified</is-modified-method-name>

</Jjonas-entity>

Methods that modify the value of the bean must set the flag i sDirty to true. Methods that restore
the value of the bean from the database must reset the flag isDirty to false. Therefore, the flag
must be set to false in the e jbLoad () and ejbStore () methods.



118 Chapter 8. Developing Entity Beans

8.12.7. passivation-timeout

Entity Bean instances are passivated at the end of the transaction and reactivated at the beginning of
the next transaction. In the event that these instances are accessed outside a transaction, their state is
kept in memory to improve performance. However, a passivation will occur in three situations:

+ When the bean is unloaded from the server, at a minimum when the server is stopped.
+ When a transaction is started on this instance.

+ After a configurable timeout. If the bean is always accessed with no transaction, it may be prudent
to periodically store the bean state on disk.

This passivation timeout can be configured in the JOnAS-specific deployment descriptor, with a non-
mandatory tag <passivation-timeout>.

<Jjonas-entity>
<ejb-name>Item</ejb-name>
<passivation-timeout>5</passivation-timeout>

</Jjonas-entity>

Example 8-1. Passivation timeout

This Entity Bean will be passivated every five second, if not accessed within transactions.



E) redhat Chapter 9.
Developing Message-Driven Beans

The EJB 2.1 specification defines a new kind of EJB component for receiving asynchronous messages.
This implements some type of “asynchronous EJB component method invocation” mechanism. The
Message-Driven Bean (also referred to as MDB in the following) is an Enterprise JavaBean, not an
Entity Bean or a Session Bean, that plays the role of a JMS MessageListener.

The EJB 2.1 specification contains detailed information about MDB. The Java Message Service Spec-
ification 1.1 contains detailed information about JMS. This chapter focuses on the use of Message-
Driven Beans within the JOnAS server.

9.1. Description of a Message-Driven Bean

A Message-Driven Bean is an EJB component that can be considered as a JMS
MessageListener, that is, processing JMS messages asynchronously; it implements the
onMessage (javax.jms.Message) method, defined in the javax.-jms.MessageListener
interface. It is associated with a JMS destination, that is, a Queue for “point-to-point” messaging or a
Topic for “publish/subscribe.” The onMessage method is activated on receipt of messages sent by a
client application to the corresponding JMS destination. It is possible to associate a JMS message
selector to filter the messages that the Message-Driven Bean should receive.

JMS messages do not carry any context, thus the onMe ssage method will execute without pre-existing
transactional context. However, a new transaction can be initiated at this moment (refer to Section
9.5 Transactional Aspects for more details). The onMessage method can call other methods on the
MBDB itself or on other beans, and can involve other resources by accessing databases or by sending
messages. Such resources are accessed the same way as for other beans (entity or session), that is,
through resource references declared in the deployment descriptor.

The JOnAS container maintains a pool of MDB instances, allowing large volumes of messages to be
processed concurrently. An MDB is similar in some ways to a stateless Session Bean: its instances are
relatively short-lived, it retains no state for a specific client, and several instances may be running at
the same time.

9.2. Developing a Message-Driven Bean

The MDB class must implement the Jjavax.jms.MessageListener and the
javax.ejb.MessageDrivenBean interfaces. In addition to the onMessage method, the following
must be implemented:

+ A public constructor with no argument.

+ public void ejbCreate (): with no arguments, called at the bean-instantiation time. It may
be used to allocate some resources, such as connection factories, for example if the bean sends
messages, or datasources or if the bean accesses databases.

+ public void ejbRemove (): usually used to free the resources allocated in the ejbCreate
method.

+ public void setMessageDrivenContext (MessageDrivenContext mdc): called by the
container after the instance creation, with no transaction context. The JOnAS container provides
the bean with a container context that can be used for transaction management, for example, for
calling setRollbackOnly (), getRollbackOnly(), getUserTransaction().

The following is an example of an MDB class:



120 Chapter 9. Developing Message-Driven Beans

public class MdbBean implements MessageDrivenBean, MessageListener ({
private transient MessageDrivenContext mdbContext;
public MdbBean () {}
public void setMessageDrivenContext (MessageDrivenContext ctx) {
mdbContext = ctx;
}
public void ejbRemove () {}

public void ejbCreate() {}

public void onMessage (Message message) {

try f
TextMessage mess = (TextMessage)message;
System.out.println( "Message received: "+mess.getText ());
}catch (JMSException ex) {
System.err.println ("Exception caught: "+ex);

}
}

The destination associated with an MDB is specified in the deployment descriptor of the bean. A des-
tination is a JMS-administered object, accessible via JNDI (the Java Naming and Directory Interface).
The description of an MDB in the EJB 2.1 deployment descriptor contains the following elements,
which are specific to MDBs:

+ The JMS acknowledgement mode: auto-acknowledge or dups-ok-acknowledge (refer to the JMS
specification for the definition of these modes)

+ Aneventual JMS message selector: this is a JMS concept which allows the filtering of the messages
sent to the destination

+ A message-driven-destination, which contains the destination type (Queue or Topic) and the sub-
scription durability (in the case of Topic)

The following example illustrates such a deployment descriptor:

<enterprise-beans>
<message-driven>
<description>Describe here the message driven bean Mdb</description>
<display-name>Message Driven Bean Mdb</display-name>
<ejb-name>Mdb</ejb-name>
<ejb-class>samplemdb.MdbBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-selector>Weight >= 60.00 AND LName
LIKE ’Sm_th’</message-selector>
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>NonDurable</subscription-durability>
</message-driven-destination>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
</message-driven>
</enterprise-beans>

If the transaction type is “container,” the transactional behavior of the MDB’s methods are defined as
for other enterprise beans in the deployment descriptor, as in the following example:

<assembly-descriptor>



Chapter 9. Developing Message-Driven Beans 121

<container-transaction>
<method>
<ejb-name>Mdb</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

For the onMessage method, only the Required or Not Supported transaction attributes must be
used, since there can be no pre-existing transaction context.

For the message selector specified in the previous example, the sent JMS messages are expected to
have two properties, “Weight” and “LName.” For example, to assign the JMS client program sending
the messages:

message.setDoubleProperty ("Weight",75.5);
message.setStringProperty ("LName", "Smith");

Such a message will be received by the Message-Driven Bean. The message selector syntax is based
on a subset of the SQL92. Only messages whose headers and properties match the selector are deliv-
ered. Refer to the JMS specification for more details.

The JNDI name of a destination associated with an MDB is defined in the JOnAS-specific deployment
descriptor, within a jonas-message-driven element, as illustrated in the following:

< jonas-message-driven>
<ejb-name>Mdb</ejb-name>
< jonas-message-driven-destination>
< jndi-name>sampleTopic</jndi-name>
</jonas-message-driven-destination>
</jonas-message-driven>

Once the destination is established, a client application can send messages to the MDB through a
destination object obtained via JNDI as follows:

Queue g = context.lookup ("sampleTopic");

If the client sending messages to the MDB is an EJB component itself, it is preferable that it use
a resource environment reference to obtain the destination object. The use of resource environment
references is described in Section 26.2 Writing JMS Operations Within an Application Component.

9.3. Administration Aspects

It is assumed at this point that the JOnAS server will make use of an existing JMS implementation;
for example, JORAM or SwiftMQ.

The default policy is that the MDB developer and deployer are not concerned with JMS
administration. This means that the developer/deployer will not create or use any JMS Connection
factories and will not create a JMS destination (which is necessary for performing JMS operations
within an EJB component (see Chapter 26 JMS User’s Guide)); they will simply define the type
of destination in the deployment descriptor and identify its JNDI name in the JOnAS-specific
deployment descriptor, as described in the previous section. This means that JOnAS will implicitly
create the necessary administered objects by using the proprietary administration APIs of the JMS
implementation (since the administration APIs are not standardized). To perform such administration
operations, JOnAS uses wrappers to the JMS provider administration API. For JORAM, the wrapper
is org.objectweb. jonas_jms.JImsAdminForJoram (which is the default wrapper class defined
by the jonas.service.jms.mom property in the jonas.properties file). For SwiftMQ, a



122 Chapter 9. Developing Message-Driven Beans

com.swiftmg.appserver. jonas.JmsAdminForSwiftMQ class can be obtained from the
SwiftMQ site.

For the purpose of this implicit administration phase, the deployer must add the “jms” service in
the list of the JOnAS services. For the example provided, the jonas.properties file should contain the
following:

jonas.services registry, security, jtm, dbm, jms, ejb
// The jms service must be added

jonas.service.ejb.descriptors samplemdb. jar

jonas.service. jms.topics sampleTopic // not mandatory

The destination objects may or may not pre-exist. The EJB server will not create the corresponding
JMS destination object if it already exists. (Refer also to Section 26.4 JMS Administration). The
sampleTopic should be explicitly declared only if the JOnAS Server is going to create it first, even
if the Message-Driven Bean is not loaded, or if it is use by another client before the Message-Driven
Bean is loaded. In general, it is not necessary to declare the sampleTopic.

JONAS uses a pool of threads for executing Message-Driven Bean instances on message reception,
thus allowing large volumes of messages to be processed concurrently. As previously explained,
MBDB instances are stateless and several instances can execute concurrently on behalf of the same
MBDB. The default size of the pool of thread is 10, and it may be customized via the jonas property
jonas.service.ejb.mdbthreadpoolsize, which is specified in the jonas.properties file as
in the following example:

jonas.service.ejb.mdbthreadpoolsize 50

9.4. Running a Message-Driven Bean

To deploy and run a Message-Driven Bean, perform the following steps:

+ Verify that a registry is running.

+ Start the Message-Oriented Middleware (the JMS provider implementation). See Section 9.4.1
Launching the Message-Oriented Middleware or Section 26.5.1 Accessing the Message-Oriented
Middleware as a Service.

+ Create and register in JNDI the JMS destination object that will be used by the MDB.

This can be done automatically by the JMS service or explicitly by the proprietary administration
facilities of the JMS provider (Section 26.4 JMS Administration). The JMS service creates the
destination object if this destination is declared in the jonas.properties file (as specified in the
previous section).

+ Deploy the MDB component in JOnAS.

Note that, if the destination object is not already created when deploying an MDB, the container
asks the JMS service to create it based on the deployment descriptor content.

+ Run the EJB client application.
+ Stop the application.

When using JMS, it is very important to stop JOnAS using the jonas stop command; it should
not be stopped directly by killing it.



Chapter 9. Developing Message-Driven Beans 123

9.4.1. Launching the Message-Oriented Middleware

If the configuration property jonas.services contains the jms service, then the JOnAS JMS service
will be launched and may try to launch a JMS implementation (a MOM).

For launching the MOM, three possibilities can be considered:

1. Launching the MOM in the same JVM as JOnAS

This is the default situation obtained by assigning the t rue value to the configuration property
jonas.service.jms.collocatedinthe jonas.properties file.
jonas.services security, jtm, dbm, jms, ejb

// The jms service must be in the list
jonas.service.jms.collocated true

In this case, the MOM is automatically launched by the JOnAS JMS service at the JOnAS
launching time (command jonas start).

2. Launching the MOM in a separate JVM

The JORAM MOM can be launched using the command:
JmsServer

For other MOMs, the proprietary command should be used.

The configuration property jonas.service.jms.collocated must be set to false in the
jonas.properties file. Setting this property is sufficient if the JORAM’s JVM runs on
the same host as JONAS, and if the MOM is launched with its default options (unchanged
a3servers.xml configuration file under JONAS_BASE/conf or JONAS_ROOT/conf if
JONAS_BASE is not defined).
jonas.services security, jtm, dbm, jms, ejb

// The jms service must be in the list
jonas.service.jms.collocated false

To use a specific configuration for the MOM, such as changing the default host (which is local-
host) or the default connection port number (which is 16010), requires defining the additional
jonas.service. jms.url configuration property as presented in the following case.

3. Launching the MOM on another host

This requires defining the jonas.service. jms.url configuration property. When using JO-
RAM, its value should be the JORAM URL joram://host:port where host is the host
name, and port is the connection port (by default, 16010). For SwiftMQ, the value of the URL
is similar to the following: smgp://host:4001/timeout=10000.
jonas.services security, jtm, dbm, jms, ejb

// The jms service must be in the list
jonas.service.jms.collocated false
jonas.service. jms.url joram://host2:16010

9.4.1.1. Change the JORAM default configuration

As mentioned previously, the default host or default connection port number may need to
be changed. This requires modifying the a3servers.xml configuration file provided by
the JOnAS delivery in JONAS_ROOT/conf directory. For this, JOnAS must be configured
with the property jonas.service.jms.collocated set to false, and the property
jonas.service.jms.url set to joram://host:port. Additionally, the MOM must
have been previously launched with the JmsServer command. This command defines a
Transaction property set to fr.dyade.aaa.util.NullTransaction. If the messages need
to be persistent, replace the -DTransaction=fr.dyade.aaa.util.NullTransaction
option with the -DTransaction=fr.dyade.aaa.util.ATransaction option. Refer to
the JORAM documentation for more details about this command. To define a more complex



124 Chapter 9. Developing Message-Driven Beans

configuration (for example, distribution, multi-servers), refer to the JORAM documentation on
http://joram.objectweb.org.

9.5. Transactional Aspects

Because a transactional context cannot be carried by a message (according to the EJB 2.1 speci-
fication), an MDB will never execute within an existing transaction. However, a transaction may
be started during the onMessage method execution, either due to a “required” transaction attribute
(container-managed transaction) or because it is explicitly started within the method (if the MDB is
bean-managed transacted). In the second case, the message receipt will not be part of the transac-
tion. In the case of the container-managed transaction, the container starts a new transaction before
de-queuing the JMS message (the receipt of which will, thus, be part of the started transaction), then
enlist the resource manager associated with the arriving message and all the resource managers ac-
cessed by the onMessage method. If the onMessage method invokes other Enterprise Beans, the
container passes the transaction context with the invocation. Therefore, the transaction started at the
onMessage method execution may involve several operations, such as accessing a database (via a call
to an Entity Bean, or by using a “datasource” resource), or sending messages (by using a “connection
factory” resource).

9.6. Message-Driven Beans Example
JOnAS provides examples that are located in the examples/src/mdb install directory.

samplemdb is a very simple example, the code of which is used in the previous topics for illustrating
how to use Message-Driven Beans.

sampleappli is a more complex example that shows how the sending of JMS messages and updates
in a database via JDBC may be involved in the same distributed transaction.

The following figure illustrates the architecture of this example application.



Chapter 9. Developing Message-Driven Beans 125

MDE StockHandler

Figure 9-1. Example Architecture

There are two Message-Driven Beans in this example:

+ $JONAS_ROOT/examples/src/mdb/sampleappli/StockHandlerBean is a Message-Driven Bean lis-
tening to a topic and receiving Map messages. The onMessage method runs in the scope of a
transaction started by the container. It sends a Text message on a Queue (OrdersQueue) and up-
dates a Stock element by decreasing the stock quantity. If the stock quantity becomes negative, an
exception is received and the current transaction is marked for rollback.

+ $JONAS_ROOT/examples/src/mdb/sampleappli/OrderBean is another Message-Driven Bean lis-
tening on the OrdersQueue Queue. On receipt of a Text message on this queue, it writes the corre-
sponding String as a new line in a file (Order.txt).

The example also includes a CMP Entity Bean $JONAS_ROOT/examples/src/mdb/sampleappli/Stock
that handles a stock table.

A Stock item is composed of a Stockid (String), which is the primary key, and a Quantity (int). The
method decreaseQuantity (int gty) decreases the quantity for the corresponding stockid, but
can throw a RemoteException Negative stock.

The JMS Client application SampleAppliClient sends several messages on StockHandlerTopic
(see  $JONAS_ROOT/examples/src/mdb/sampleappli/Sample AppliClient.java). It uses Map
messages with three fields: CustomerId, ProductId, and Quantity. Before sending
messages, this client calls the EnvBean for creating the StockTable in the database



126 Chapter 9. Developing Message-Driven Beans

with known values in order to check the results of updates at the end of the test (see
$JONAS_ROOT/examples/src/mdb/sampleappli/EnvBean.java). Eleven messages are sent, the
corresponding transactions are committed, and the last message sent causes the transaction to be
rolled back.

9.6.1. Compiling This Example

To compile the sample application examples/src/mdb/sampleappli, use Ant with the
$JONAS_ROOT/examples/src/build.xml file.

9.6.2. Running This Example

The default configuration of the JMS service in jonas.properties is:

jonas.services jmx, security, jtm, dom, jms, ejb

// The jms service must be added
jonas.service.ejb.descriptors sampleappli.jar
jonas.service. jms.topics StockHandlerTopic
jonas.service. jms.queues OrdersQueue
jonas.service.jms.collocated true

This indicates that the JMS Server will be launched in the same JVM as the JOnAS Server, and the
JMS-administered objects StockHandlerTopic (Topic) and OrdersQueue (Queue) will be created
and registered in JNDL, if it does not already exist.

1. Run the JOnAS Server.

service jonas start

2. Deploy the sampleappli container:
jonas admin -a sampleappli.jar
3. Run the EJB client:
jclient sampleappli.SampleAppliClient

4. Stop the server:
service jonas stop

9.7. Tuning the Message-Driven Bean Pool

A pool is handled by JOnAS for each Message-Driven Bean. The pool can be configured in the
JOnAS-specific deployment descriptor with the following tags:

min-pool-size

This optional integer value represents the minimum instances that will be created in the pool
when the bean is loaded. This will improve bean instance creation time, at least for the first
beans. The default value is 0.

max-cache-size

This optional integer value represents the maximum number of instances in memory. The purpose
of this value is to keep JOnAS scalable. The policy is that, at bean-creation time, an instance is
taken from the pool of free instances. If the pool is empty, a new instance is always created.
When the instance must be released (at the end of the onMessage method), it is pushed into the
pool, except if the current number of instances created exceeds the max-cache-size, in which
case this instance is dropped. The default value is no limit.



Chapter 9. Developing Message-Driven Beans

9.7.1. Message-Driven Bean Pool Example

< Jjonas-ejb-jar>
< jonas-message-driven>
<ejb-name>Mdb</ejb-name>
< jndi-name>mdbTopic</jndi-name>
<max-cache-size>20</max-cache-size>
<min-pool-size>10</min-pool-size>
</Jjonas-message-driven>
</jonas-ejb-jar>

127



128 Chapter 9. Developing Message-Driven Beans



5) redhat
Chapter 10.

Defining the Deployment Descriptor

This chapter is for the Enterprise Bean provider; that is, the person in charge of developing the soft-
ware components on the server side.

10.1. Principles

The bean programmer is responsible for providing the deployment descriptor associated with
the developed Enterprise Beans. The Bean Provider’s responsibilities and the Application
Assembler’s responsibilities are to provide an XML deployment descriptor that conforms to the
deployment descriptor’'s XML schema as defined in the EBJ specification version 2.0. (Refer to
$JONAS_ROOT/xml/ejb-jar_2_1.xsdor http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd).

To deploy Enterprise JavaBeans on the EJB server, information not defined in the standard XML
deployment descriptor may be needed. For example, this information may include the mapping of
the bean to the underlying database for an Entity Bean with container-managed persistence. This
information is specified during the deployment step in another XML deployment descriptor that
is specific to JOnAS. The JOnAS-specific deployment descriptor’s XML schema is located in
$JONAS_ROOT/xml/jonas-ejb-jar_x_Y.xsd. The file name of the JOnAS-specific XML
deployment descriptor must be the file name of the standard XML deployment descriptor prefixed by
jonas-— .

The parser gets the specified schema via the classpath (schemas are packaged in the
$JONAS_ROOT/1ib/common/ow_jonas. jar file).

The standard deployment descriptor should include the following structural information for each En-
terprise Bean:

+ The Enterprise Bean’s name

+ The Enterprise Bean’s class

+ The Enterprise Bean’s home interface

+ The Enterprise Bean’s remote interface

+ The Enterprise Bean’s type

+ A re-entrancy indication for the Entity Bean

+ The Session Bean’s state management type

+ The Session Bean'’s transaction demarcation type
+ The Entity Bean’s persistence management

+ The Entity Bean’s primary key class

+ Container-managed fields

+ Environment entries

+ The bean’s EJB references

+ Resource manager connection factory references
« Transaction attributes.

The JOnAS-specific deployment descriptor contains information for each Enterprise Bean including:

+ The JNDI name of the Home object that implement the Home interface of the Enterprise Bean

+ The JNDI name of the DataSource object corresponding to the resource manager connection factory
referenced in the Enterprise Bean’s class

« The JNDI name of each EJB references
+ The JNDI name of JMS administered objects



130 Chapter 10. Defining the Deployment Descriptor

+ Information for the mapping of the bean to the underlying database, if it is an entity with container-
managed persistence.

10.2. Example of Session Descriptors

<?xml version="1.0" encoding="ISO-8859-1"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://Jjava.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
version="2.1">
<description>Here is the description of the test’s beans</description>
<enterprise-beans>
<session>
<description>... Bean example one ...</description>
<display-name>Bean example one</display-name>
<ejb-name>ExampleOne</ejb-name>
<home>tests.Ex1Home</home>
<remote>tests.Exl</remote>
<ejb-class>tests.ExlBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
<env-entry>
<env-entry-name>namel</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>valuel</env-entry-value>
</env-entry>
<ejb-ref>
<ejb-ref-name>eijb/sesl</ejb-ref-name>
<ejb-ref-type>session</ejb-ref-type>
<home>tests.SS1Home</home>
<remote>tests.SS1</remote>
</ejb-ref>
<resource-ref>
<res-ref-name>jdbc/mydb</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res-auth>Application</res—auth>
</resource-ref>
</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>ExampleOne</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans—-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>ExampleOne</ejb-name>
<method-inter>Home</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Supports</trans—-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>ExampleOne</ejb-name>
<method-name>methodOne</method-name>



Chapter 10. Defining the Deployment Descriptor 131

</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>ExampleOne</ejb-name>
<method-name>methodTwo</method-name>
<method-params>
<method-param>int</method-param>
< /method-params>
</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>ExampleOne</ejb-name>
<method-name>methodTwo< /method-name>
<method-params>
<method-param>java.lang.String</method-param>
< /method-params>
</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

<?xml version="1.0" encoding="IS0-8859-1"?>

<jonas-ejb-jar xmlns="http://www.objectweb.org/jonas/ns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.objectweb.org/jonas/ns
http://www.objectweb.org/jonas/ns/jonas-ejb-jar_4_0.xsd" >

< jonas-session>
<ejb-name>ExampleOne</ejb-name>
< jndi-name>ExampleOneHome</jndi-name>
< jonas-ejb-ref>
<ejb-ref-name>eijb/sesl</ejb-ref-name>
<jndi-name>SS1Home_one</jndi-name>
</jonas-ejb-ref>
< jonas-resource>
<res-ref-name>jdbc/mydb</res-ref-name>
<jndi-name>jdbc_1</jndi-name>
</jonas-resource>
</Jjonas-session>
</Jjonas-ejb-jar>

10.3. Example of Container-managed Persistence Entity Descriptors
(CMP 1.1)

<?xml version="1.0" encoding="ISO-8859-1"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
version="2.1">
<description>Here is the description of the test’s
beans</description>
<enterprise-beans>
<entity>



132 Chapter 10. Defining the Deployment Descriptor

<description>... Bean example one ...</description>
<display-name>Bean example two</display-name>
<ejb-name>ExampleTwo</ejb-name>
<home>tests.Ex2Home< /home>
<remote>tests.Ex2</remote>
<local-home>tests.Ex2LocalHome</local-home>
<local>tests.Ex2Local</local>
<ejb-class>tests.Ex2Bean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>tests.Ex2PK</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>1.x</cmp-version>
<cmp-field>
<field-name>fieldl</field-name>
</cmp-field>
<cmp-field>
<field-name>field2</field-name>
</cmp-field>
<cmp-field>
<field-name>field3</field-name>
</cmp-field>
<primkey-field>field3</primkey-field>
<env-entry>
<env-entry-name>namel</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>valuel</env-entry-value>
</env-entry>
</entity>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>ExampleTwo</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Supports</trans—-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

<?xml version="1.0" encoding="IS0-8859-1"?>
<jonas-ejb-jar xmlns="http://www.objectweb.org/jonas/ns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.objectweb.org/jonas/ns
http://www.objectweb.org/jonas/ns/jonas—ejb-jar_4_0.xsd" >
<Jjonas—entity>
<ejb-name>ExampleTwo</ejb-name>
<Jjndi-name>ExampleTwoHome</jndi-name>
<jndi-local-name>ExampleTwoLocalHome</Jjndi-local-name>
< jdbc-mapping>
<jndi-name>jdbc_1</jndi-name>
<jdbc-table-name>YourTable</jdbc-table-name>
<cmp-field-jdbc-mapping>
<field-name>fieldl</field-name>
<Jjdbc-field-name>dbfl</jdbc-field-name>
</cmp-field-jdbc-mapping>
<cmp-field-jdbc-mapping>
<field-name>field2</field-name>
< jdbc-field-name>dbf2</jdbc-field-name>
</cmp-field-jdbc-mapping>
<cmp-field-jdbc-mapping>
<field-name>field3</field-name>



Chapter 10. Defining the Deployment Descriptor 133

< jdbc-field-name>dbf3</jdbc-field-name>
</cmp-field-jdbc-mapping>
<finder-method-jdbc-mapping>
< jonas-method>
<method-name>findByFieldl</method-name>
</jonas-method>
< Jjdbc-where-clause>where dbfl = ?</jdbc-where-clause>
</finder-method-jdbc-mapping>
</jdbc-mapping>
</jonas-entity>
</jonas-ejb-jar>

10.4. Tips

Although some characters, such as “>”, are legal, it is good practice to replace them with XML entity
references.

The following is a list of the predefined entity references for XML:

< &lt; less than
> &gt; greater than
& &amp; ampersand

&apos; | apostrophe

&quot; | quotation mark




134 Chapter 10. Defining the Deployment Descriptor



5) redhat
Chapter 11.

Transactional Behavior of EJB Applications

This chapter is for the Enterprise Bean provider; that is, the person in charge of developing the soft-
ware components on the server side.

11.1. Declarative Transaction Management

For container-managed transaction management, the transactional behavior of an Enterprise Bean is
defined at configuration time and is part of the assembly-descriptor element of the standard deploy-
ment descriptor. It is possible to define a common behavior for all the methods of the bean, or to define
the behavior at the method level. This is done by specifying a transactional attribute, which can be
one of the following:

NotSupported
If the method is called within a transaction, this transaction is suspended during the time of the
method execution.

Required
If the method is called within a transaction, the method is executed in the scope of this trans-
action; otherwise, a new transaction is started for the execution of the method and committed
before the method result is sent to the caller.

RequiresNew
The method will always be executed within the scope of a new transaction. The new transaction
is started for the execution of the method, and committed before the method result is sent to the
caller. If the method is called within a transaction, this transaction is suspended before the new
one is started and resumed when the new transaction has completed.

Mandatory
The method should always be called within the scope of a transaction, else the container will
throw the TransactionRequired exception.

Supports
The method is invoked within the caller transaction scope; if the caller does not have an associ-
ated transaction, the method is invoked without a transaction scope.

Never

The client is required to call the bean without any transaction context; if it is not the case, a
java.rmi.RemoteException is thrown by the container.

This is illustrated in the following table:

Transaction Client Transaction associated with
Attribute transaction enterprise Bean’s method
NotSupported - -

T1 -




136

Chapter 11. Transactional Behavior of EJB Applications

Transaction Client Transaction associated with
Attribute transaction enterprise Bean’s method
Required - T2
T1 T1
RequiresNew - T2
T1 T2
Mandatory - error
T1 T1
Supports - -
T1 T1
Never - -
T1 error

In the deployment descriptor, the specification of the transactional attributes appears in the assembly-
descriptor as follows:

<assembly-descriptor>
<container-transaction>

<method>

<ejb-name>AccountImpl</ejb-name>
<method-name>*</method-name>

< /method>
<trans-attribute>Supports</trans—-attribute>

</container-transaction>
<container-transaction>

<method>

<ejb-name>AccountImpl</ejb-name>
<method-name>getBalance</method-name>

< /method>
<trans-attribute>Required</trans—-attribute>

</container-transaction>
<container-transaction>

<method>

<ejb-name>AccountImpl</ejb-name>
<method-name>setBalance</method-name>

< /method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>
</assembly-descriptor>

In this example, for all methods of the Accountlmpl bean which are not explicitly specified in a
container-transaction element, the default transactional attribute is Supports (defined at the bean level),
and the transactional attributes are Required and Mandatory (defined at the method-name level) for
the methods getBalance and setBalance respectively.



Chapter 11. Transactional Behavior of EJB Applications 137

11.2. Bean-managed Transactions

A bean that manages its transactions itself must set the t ransaction-type element in its standard
deployment descriptor to:

<transaction-type>Bean</transaction-type>

To demarcate the transaction boundaries in a bean with bean-managed transactions, the bean program-
mer should use the javax.transaction.UserTransaction interface, which is defined on an EJB
server object that may be obtained using the EJBContext.getUserTransaction () method (the
SessionContext object or the EntityContext object depending on whether the method is defined on a
session or on an Entity Bean).

The following example shows a Session Bean method doTxJob demarcating the transaction bound-
aries; the UserTransaction object is obtained from the sessionContext object, which should have been
initialized in the setSessionContext method (refer to the Section 7.4 The Enterprise Bean Class).

public void doTxJob () throws RemoteException {
UserTransaction ut = sessionContext.getUserTransaction();
ut.begin();
// transactional operations
ut.commit () ;

}

Another way to do this is to use JNDI and to retrieve UserTransaction with the name
java:comp/UserTransaction in the initial context.

11.3. Distributed Transaction Management

As explained in the previous section, the transactional behavior of an application can be defined in a
declarative way or coded in the bean and/or the client itself (transaction boundaries demarcation). In
any case, the distribution aspects of the transactions are completely transparent to the bean provider
and to the application assembler. This means that a transaction may involve beans located on several
JOnAS servers and that the platform itself will handle management of the global transaction. It will
perform the two-phase commit protocol between the different servers, and the bean programmer need
do nothing.

Once the beans have been developed and the application has been assembled, it is possible for the
deployer and for the administrator to configure the distribution of the different beans on one or several
machines, and within one or several JOnAS servers. This can be done without impacting either the
beans’ code or their deployment descriptors. The distributed configuration is specified at launch time.
In the environment properties of an EJB server, the following can be specified:

+ Which Enterprise Beans the JOnAS server will handle
« If a Java Transaction Monitor will be located in the same Java Virtual Machine (JVM) or not.

To achieve this goal, two properties must be set in the jonas.properties file,
jonas.service.ejb.descriptors and jonas.service.jtm.remote. The first one lists the
beans that will be handled on this server (by specifying the name of their EJB-JAR files), and the
second one sets the Java Transaction Monitor (JTM) launching mode:

+ If set to t rue, the JTM is remote, that is, the JTM must be launched previously in another JVM
« Ifsetto false, the JTM is local, that is, it will run in the same JVM as the EJB Server.

Example:

jonas.service.ejb.descriptors Beanl.jar, Bean2.jar



138 Chapter 11. Transactional Behavior of EJB Applications

jonas.service. jtm.remote false

The Java Transaction Monitor can run outside any EJB server, in which case it can be launched in a
stand-alone mode using the following command:

TMServer

Using these configuration facilities, it is possible to adapt the beans’ distribution to the resources (CPU
and data) location, for optimizing performance.

The following figure illustrates four cases of distribution configuration for three beans.

JTM

EJB server Case 1
JT™M

EJB server 1 EJB server 2 EJB server 3 Case 2

s

EJB server 1 EJB server 2 EJB server 3 Case 3
JT™M JT™M JTM
EJB server 1 EJB server 2 EJB server 3 Case 4

Figure 11-1. Distribution Configuration For Three Beans

1. Case 1: The three beans B1, B2, and B3 are located on the same JOnAS server, which embeds
a Java Transaction Monitor.

2. Case 2: The three beans are located on different JOnAS servers, one of them running the Java
Transaction Monitor, which manages the global transaction.

3. Case 3: The three beans are located on different JOnAS servers, the Java Transaction Monitor
is running outside of any JOnAS server.

4. Case 4: The three beans are located on different JOnAS servers. Each EJB server is running a
Java Transaction Monitor. One of the JTM acts as the master monitor, while the two others are
slaves.

These different configuration cases may be obtained by launching the JOnAS servers and eventually
the JTM (case 3) with the adequate properties. The rational when choosing one of these configurations
is resources location and load balancing. However, consider the following points:



Chapter 11. Transactional Behavior of EJB Applications 139

« If the beans should run on the same machine, with the same server configuration, case 1 is the more
appropriate.

+ If the beans should run on different machines, case 4 is the more appropriate, since it favors local
transaction management.

+ If the beans should run on the same machine, but require different server configurations, case 2 is a
good approach.



140 Chapter 11. Transactional Behavior of EJB Applications



E) redhat Chapter 12.
Enterprise Bean Environment

This chapter is for the Enterprise Bean provider; that is, the person in charge of developing the soft-
ware components on the server side.

12.1. Introduction

The Enterprise Bean environment is a mechanism that allows customization of the Enterprise Bean’s
business logic during assembly or deployment. The environment is a way for a bean to refer to a
value, to a resource, or to another component so that the code will be independent of the actual
referred object. The actual value of such environment references (or variables) is set at deployment
time, according to what is contained in the deployment descriptor. The Enterprise Bean’s environment
allows the Enterprise Bean to be customized without the need to access or change the Enterprise
Bean’s source code.

The Enterprise Bean environment is provided by the container (that is, the JOnAS server) to the bean
through the JNDI interface as a JNDI context. The bean code accesses the environment using JNDI
with names starting with java:comp/env/.

12.2. Environment Entries

The bean provider declares all the bean environment entries in the deployment descriptor via the
env-entry element. The deployer can set or modify the values of the environment entries.

A bean accesses its environment entries with a code similar to the following:

InitialContext ictx = new InitialContext();

Context myenv = ictx.lookup ("java:comp/env");

Integer min = (Integer) myenv.lookup ("minvalue");
(

Integer max = (Integer) myenv.lookup ("maxvalue");

In the standard deployment descriptor, the declaration of these variables are as follows:

<env-entry>
<env-entry-name>minvalue</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>12</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>maxvalue</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>120</env-entry-value>

</env-entry>

12.3. Resource References
The resource references are another examples of environment entries. For such entries, using subcon-
texts is recommended:

+ java:comp/env/ jdbc for references to DataSources objects.

+ java:comp/env/jms for references to JMS connection factories.



142 Chapter 12. Enterprise Bean Environment

In the standard deployment descriptor, the declaration of a resource reference to a JDBC connection
factory is:

<resource-ref>
<res-ref-name>jdbc/AccountExplDs</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<res—auth>Container</res-auth>

</resource-ref>

And the bean accesses the datasource as in the following:

InitialContext ictx = new InitialContext();
DataSource ds = ictx.lookup ("java:comp/env/jdbc/AccountExplDs");

Binding of the resource references to the actual resource manager connection factories that are
configured in the EJB server is done in the JOnAS-specific deployment descriptor using the
jonas-resource element.

< jonas-resource>
<res-ref-name>jdbc/AccountExplDs</res-ref-name>
<jndi-name>jdbc_1</jndi-name>
</Jjonas-resource>

12.4. Resource Environment References

The resource environment references are another example of environment entries. They allow the
Bean Provider to refer to administered objects that are associated with resources (for example, JMS
destinations), by using logical names. Resource environment references are defined in the standard
deployment descriptor.

<resource-env-ref>
<resource-env-ref-name>jms/stockQueue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

Binding of the resource environment references to administered objects in the target operational en-
vironment is done in the JOnAS-specific deployment descriptor using the jonas-resource-env
element.

< jonas-resource-env>
<resource-env-ref-name>jms/stockQueue</resource-env-ref-name>
< jndi-name>myQueue< jndi-name>

</Jjonas-resource-env>

12.5. EJB References

The EJB reference is another special entry in the Enterprise Bean’s environment. EJB references allow
the Bean Provider to refer to the homes of other enterprise beans using logical names. For such entries,
using the subcontext java:comp/env/ejb is recommended.

The declaration of an EJB reference used for accessing the bean through its remote home and compo-
nent interfaces in the standard deployment descriptor is shown in the following example:

<ejb-ref>
<ejb-ref-name>ejb/sesl</ejb-ref-name>
<ejb-ref-type>session</ejb-ref-type>



Chapter 12. Enterprise Bean Environment 143

<home>tests.SS1lHome</home>
<remote>tests.SS1</remote>
</ejb-ref>

The declaration of an EJB reference used for accessing the bean through its local home and component
interfaces in the standard deployment descriptor is shown in the following example:

<ejb-local-ref>
<ejb-ref-name>ejb/locsesl</ejb-ref-name>
<ejb-ref-type>session</ejb-ref-type>
<local-home>tests.LocalSS1Home</local-home>
<local>tests.LocalSSl</local>
</ejb-local-ref>

If the referred bean is defined in the same EJB-JAR or EAR file, the optional e jb-1ink element of
the ejb-ref or ejb-local-ref element can be used to specify the actual referred bean. The value of the
ejb-link element is the name of the target Enterprise Bean, that is, the name defined in the ejb-name
element of the target Enterprise Bean. If the target Enterprise Bean is in the same EAR file, but in a
different EJB-JAR file, the name of the ejb-link element should be the name of the target bean, prefixed
by the name of the containing EJB-JAR file followed by ’# (for example, My_EJBs. jar#beanl).In
the following example, the ejb-link element has been added to the ejb-ref (in the referring bean SSA)
and a part of the description of the target bean (SS1) is shown:

<session>
<ejb-name>SSA<L/ejb-name>

<ejb-ref>
<ejb-ref-name>ejb/sesl</ejb-ref-name>
<ejb-ref-type>session</ejb-ref-type>
<home>tests.SS1Home</home>
<remote>tests.SS1</remote>
<ejb-1link>SS1</ejb-link>

</ejb-ref>

</session>

<session>
<ejb-name>SS1</ejb-name>
<home>tests.SS1Home</home>
<local-home>tests.LocalSS1Home</local-home>
<remote>tests.SS1</remote>
<local>tests.LocalSSl</local>
<ejb-class>tests.SS1Bean</ejb-class>

</session>

If the bean SS1 is not in the same EJB-JAR file as SSA, but in another file named
product_ejbs. jar, the ejb-link element would be:

<ejb-link>product_ejbs.jar#Ss1</ejb-link>

If the referring component and the referred bean are in separate files and not in the same EAR, the
current JOnAS implementation does not allow use of the ejb-link element. To resolve the reference in
this case, the jonas-ejb-ref element in the JOnAS-specific deployment descriptor would be used
to bind the environment JNDI name of the EJB reference to the actual JNDI name of the associated
Enterprise Bean home. In the following example, it is assumed that the JNDI name of the SS1 bean
home is SS1Home_one.

<Jjonas-session>



144 Chapter 12. Enterprise Bean Environment

<ejb-name>SSA<L/ejb-name>
< jndi-name>SSAHome</jndi-name>
<Jjonas-ejb-ref>
<ejb-ref-name>eijb/sesl</ejb-ref-name>
< jndi-name>SS1Home_one</jndi-name>
</Jjonas-ejb-ref>
</Jjonas-session>

<Jjonas-session>
<ejb-name>SS1</ejb-name>
< jndi-name>SS1Home_one</jndi-name>
<jndi-local-name>SSl1LocalHome_one</jndi-local-name>
</Jjonas-session>

The bean locates the home interface of the other Enterprise Bean using the EJB reference with the
following code:

InitialContext ictx = new InitialContext();

Context myenv = ictx.lookup ("java:comp/env");

SS1Home home =
(SS1Home) javax.rmi.PortableRemoteObject .narrow (myEnv.lookup ("ejb/sesl"),
SS1Home.class);



) rednat Chapter 13.

Security Management

This chapter is for the Enterprise Bean provider; that is, the person in charge of developing the soft-
ware components on the server side.

13.1. Introduction

The EJB architecture encourages the Bean programmer to implement the Enterprise Bean class with-
out hard-coding the security policies and mechanisms into the business methods.

13.2. Declarative Security Management

The application assembler can define a security view of the Enterprise Beans contained in the EJB-
JAR file. The security view consists of a set of security roles. A security role is a semantic grouping
of permissions for a given type of application user that allows that user to successfully use the ap-
plication. The application assembler can define (declaratively in the deployment descriptor) method
permissions for each security role. A method permission is a permission to invoke a specified group
of methods for the Enterprise Beans’ home and remote interfaces. The security roles defined by the
application assembler present this simplified security view of the Enterprise Beans application to the
deployer; the deployer’s view of security requirements for the application is the small set of security
roles, rather than a large number of individual methods.

13.2.1. Security Roles

The application assembler can define one or more security roles in the deployment descriptor. The
application assembler then assigns groups of methods of the Enterprise Beans’ home and remote
interfaces to the security roles in order to define the security view of the application.

The scope of the security roles defined in the security-role elements is the EJB-JAR file level,
and this includes all the Enterprise Beans in the EJB-JAR file.

<assembly-descriptor>
<security-role>
<role-name>tomcat</role-name>
</security-role>

</assembly-descriptor>

13.2.2. Method Permissions

After defining security roles for the Enterprise Beans in the EJB-JAR file, the application assembler
can also specify the methods of the remote and home interfaces that each security role can invoke.

Method permissions are defined as a binary relationship in the deployment descriptor from the
set of security roles to the set of methods of the home and remote interfaces of the Enterprise
Beans, including all their super interfaces (including the methods of the javax.ejb.EJBHome and
javax.ejb.EJBObject interfaces). The method permissions relationship includes the pair (R, M)
only if the security role R is allowed to invoke the method M.



146 Chapter 13. Security Management

The application assembler defines the method permissions relationship in the deployment descriptor
using the method-permission element as follows:

+ Each method-permission element includes a list of one or more security roles and a list of one
or more methods. All the listed security roles are allowed to invoke all the listed methods. Each
security role in the list is identified by the role-name element, and each method is identified by
the method element.

+ The method permissions relationship is defined as the union of all the method permissions defined
in the individual method-permission elements.

+ A security role or a method can appear in multiple method-permission elements.

It is possible that some methods are not assigned to any security roles. This means that these methods
can be accessed by anyone.

The following example illustrates how security roles are assigned to methods’ permissions in the
deployment descriptor:

<method-permission>
<role-name>tomcat</role-name>
<method>
<ejb-name>0p</ejb-name>
<method-name>*</method-name>
< /method>
</method-permission>

13.3. Programmatic Security Management

Because not all security policies can be expressed declaratively, the EJB architecture also provides a
simple programmatic interface that the Bean programmer can use to access the security context from
the business methods.

The javax.ejb.EJBContext interface provides two methods that allow the bean programmer to
access security information about the Enterprise Bean’s caller.

public interface javax.ejb.EJBContext {
//
// The following two methods allow the EJB class
// to access security information
//
java.security.Principal getCallerPrincipal() ;
boolean isCallerInRole (String roleName) ;

13.3.1. Use of getCallerPrincipal()

The purpose of the getCallerPrincipal () method is to allow the Enterprise Bean methods to
obtain the current caller principal’s name. The methods might, for example, use the name as a key to
access information in a database.

An Enterprise Bean can invoke the getCallerPrincipal() method to obtain a
java.security.Principal interface representing the current caller. The Enterprise Bean can



Chapter 13. Security Management 147

then obtain the distinguished name of the caller principal using the getName () method of the
java.security.Principal interface.

13.3.2. Use of isCallerinRole(String roleName)

The main purpose of the isCallerInRole (String roleName) method is to allow the Bean pro-
grammer to code the security checks that cannot be easily defined declaratively in the deployment
descriptor using method permissions. Such a check might impose a role-based limit on a request, or
it might depend on information stored in the database.

The Enterprise Bean code uses the isCallerInRole (String roleName) method to test whether
the current caller has been assigned to a given security role or not. Security roles are defined by the
application assembler in the deployment descriptor and are assigned to principals by the deployer.

13.3.3. Declaration of Security Roles Referenced from the Bean’s Code

The Bean programmer must declare in the security-role-ref elements of the deployment de-
scriptor all the security role names used in the Enterprise Bean code. Declaring the security roles’
references in the code allows the application assembler or deployer to link the names of the security
roles used in the code to the actual security roles defined for an assembled application through the
security-role elements.

<enterprise-beans>

<session>
<ejb-name>0p</ejb-name>
<ejb-class>sb.OpBean</ejb-class>

<security-role-ref>
<role-name>rolel</role-name>
</security-role-ref>

</session>

</enterprise-beans>

The deployment descriptor in this example indicates that the Enterprise Bean 0p makes the security
checks using isCallerInRole ("rolel") in at least one of its business methods.

13.3.4. Linking Security Role References and Security Roles

If the security-role elements have been defined in the deployment descriptor, all the security role
references declared in the security-role-ref elements must be linked to the security roles defined
in the security-role elements.

The following deployment descriptor example shows how to link the security role references named
rolel to the security role named tomcat.

<enterprise-beans>

<session>
<ejb-name>0p</ejb-name>
<ejb-class>sb.OpBean</ejb-class>



148 Chapter 13. Security Management

<security-role-ref>
<role-name>rolel</role-name>
<role-link>tomcat</role-link>

</security-role-ref>

</session>

</enterprise-beans>

In summary, the role names used in the EJB code (in the isCallerInRole method) are, in fact, references
to actual security roles, which makes the EJB code independent of the security configuration described
in the deployment descriptor. The programmer makes these role references available to the Bean
deployer or application assembler via the security-role-ref elements included in the session
or entity elements of the deployment descriptor. Then, the Bean deployer or application assembler
must map the security roles defined in the deployment descriptor to the "specific" roles of the target
operational environment (for example, groups on Unix systems). However, this last mapping step is
not currently available in JOnAS.



E) redhat Chapter 14.
EJB Packaging

This chapter describes how the bean components should be packaged. It is for the Enterprise Bean
provider; that is, the person in charge of developing the software components on the server side.

14.1. Enterprise Bean Principles

Enterprise Beans are packaged for deployment in a standard Java programming language Archive file,
called an EJB-JAR file. This file must contain the following:

The beans’ class files

The class files of the remote and home interfaces, of the beans’ implementations, of the beans’
primary key classes (if there are any), and of all necessary classes.

The beans’ deployment descriptor
The EJB-JAR file must contain the deployment descriptors, which are made up of:

+ The standard xml deployment descriptor, in the format defined in the EJB
2.1 specification. Refer to $JONAS_ROOT/xml/ejb-jar_2_1.xsd or
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd. This deployment descriptor must be stored
with the name META-INF/ejb-jar.xml in the EJB-JAR file.

« The JOnAS-specific XML deployment descriptor in the format defined in
$JONAS_ROOT/xml/jonas-ejb-jar_X_Y.xsd. This JOnAS deployment descriptor must
be stored with the name META-INF/jonas—ejb-jar.xml in the EJB-JAR file.

14.1.1. Entity Bean Example

Before building the EJB-JAR file of the Account Entity Bean example, the Java source files must be
compiled to obtain the class files and the two XML deployment descriptors must be written.

Then, the EJB-JAR file (OpEB. jar) can be built using the jar command:

cd your_bean_class_directory

mkdir META-INF

cp .../eb/*.xml META-INF

jar cvf OpEB.jar sb/*.class META-INF/*.xml



150 Chapter 14. EJB Packaging



5) redhat
Chapter 15.

Application Deployment and Installation Guide

This chapter is for the application deployer.

15.1. Deployment and Installation Process Principles

15.1.1. The Deployment and Installation of Enterprise Beans

This chapter assumes that the Enterprise Bean provider followed the Enterprise Beans Programmer’s
Guide and packaged the beans’ classes together with the deployment descriptors in a EJB-JAR file.
To deploy un-packed Enterprise Beans, refer to Section 3.5.2 Configuring the EJB Container Service.

To deploy the Enterprise Beans in JOnAS, the deployer must add the interposition classes interfacing
the EJB components with the services provided by the JOnAS application server.

The Chapter 6 JOnAS Command Reference tool supplied in the JOnAS distribution provides the ca-
pability of generating interposition classes and updating the EJB-JAR file.

The application deployer may also need to customize the deployment descriptors in order to adapt it
to a specific operational environment. This must be done before using GenIC.

The deployer may choose to deploy the Enterprise Beans as stand-alone application components, in
which case the EJB-JAR must be installed in the $JONAS_ROOT/ejbjars directory. The deployer

may also choose to include them in WAR or EAR packaging, which is presented in the following
sections.

15.1.2. The Deployment and Installation of Web and J2EE Applications

Once the packaging of the application components has been completed as described in the Chapter 18
WAR Packaging or Chapter 23 EAR Packaging guides, the obtained archive file must be installed in
the:

+ $JONAS_ROOT/webapps directory, for WAR files

+ $JONAS_ROOT/apps directory, for EAR files

15.2. Example of Deploying and Installing an EJB Using an EJB-JAR
File
For this example, it is assumed that you want to customize the deployment of the Account Impl bean

in the JOnAS example examples/src/eb by changing the name of the database table used for the
persistence of the AccountImpl.

The current directory is $JONAS_ROOT/examples/src/eb. Do the following:

+ Edit jonas—ejb-jar.xml and modify the value of the < jdbc-table-name> element included
in the < jdbc-mapping> element corresponding to Account Impl entity.

+ Compile all the . java files present in this directory:
javac -d ../../classes Account.java AccountImplBean.java
AccountExplBean. java AccountHome. java ClientAccount. java



152 Chapter 15. Application Deployment and Installation Guide

+ Perform the deployment:

« Build an EJB-JAR file named ejb-jar. jar with all the corresponding classes and the two

deployment descriptors:

mkdir -p ../../classes/META-INF

cp ejb-jar.xml ../../classes/META-INF/ejb-jar.xml

cp jonas-ejb-jar.xml ../../classes/META-INF/jonas-ejb-jar.xml

ced ../../classes

jar cvf eb/ejb-jar.jar META-INF/ejb-jar.xml
META-INF/jonas—ejb-jar.xml eb/Account.class eb/AccountExplBean.class
eb/AccountHome.class eb/AccountImplBean.class

« From the source directory, run the GenIC generation tool that will generate the final
ejb-jar. jar file with the interposition classes:
GenIC -d ../../classes ejb-jar.jar

+ Install the EJB-JAR in the $JONAS_ROOT/ejbjars directory:
cp ../../classes/eb/ejb-jar.jar $JONAS_ROOT/ejbjars/ejb-jar.jar

The JOnAS application Server can now be launched using the command:
service jonas start

The steps just described for building the new e jb-jar. jar file explain the deployment process. It is
generally implemented by an ANT build script.

If Apache ANT is installed on your machine, type ant install in the
$JONAS_ROOT/examples/src directory to build and install all ejb-jar.jar files for the
examples.

To write a build.xml file for ANT, use the ejbjar task, which is one of the optional EJB tasks
defined in ANT (see http://jakarta.apache.org/ant/manual/index.html). The ejbjar task contains a
nested element called jonas, which implements the deployment process described above (interposi-
tion classes generation and EJB-JAR file update).

Generally, the $JONAS_ROOT/1ib/common/ow_jonas_ant . jar file has the most up-to-date ver-
sion of the EJB task containing an updated implementation of the jonas nested element. See Chapter
27 Ant EJB Tasks: Using EJB-JAR for information on the jonas nested element.

For example, $JONAS_ROOT/examples/src/alarm/build.xml contains this code snippet:

<!-- ejbjar task -->

<taskdef name="ejbjar"
classname="org.objectweb. jonas.ant.EjbJar"
classpath="${jonas.root}/lib/common/ow_jonas_ant.jar" />

<!-- Deploying ejbjars via ejbjar task -->
<target name="jonasejbjar"
description="Build and deploy the ejb-jar file"
depends="compile" >
<ejbjar basejarname="alarm"
srcdir="${classes.dir}"
descriptordir="${src.dir}/beans/org/objectweb/alarm/beans"
dependency="full">
<include name="**/alarm.xml"/>
<support dir="${classes.dir}">
<include name="**/ViewProxy.class"/>
</support>
<Jjonas destdir="${dist.ejbjars.dir}"
jonasroot="${jonas.root}"
mappernames="$ {mapper.names}"



Chapter 15. Application Deployment and Installation Guide 153

protocols="${protocols.names}" />
</ejbjar>
</target>

15.3. Deploying and Installing a Web Application

Before deploying a Web application in the JOnAS application server, first package its components in
a WAR file as explained in Chapter 18 WAR Packaging.

For Apache ANT, refer to the target WAR in the $JONAS_ROOT/examples/earsample/build.xml file.
Next, install the WAR file into the $JONAS_ROOT/webapps directory.

Note

Be aware that the WAR file must not be installed in the $CATALINA_HOME/webapps directory.

Then, check the configuration. Before running the web application, check that the web service is
present in the jonas. services property. The e jb service may also be needed if the Web application
uses enterprise beans.

The name of the WAR file can be added in the jonas.service.web.descriptors section.

Finally, run the application Server:
jonas start

The web components are deployed in a web container created during the startup. If the WAR file was
not added in the jonas.service.web.descriptors list, the web components can be dynamically
deployed using the jonas admin command or JonasAdmin tool.

15.4. Deploying and Installing a J2EE Application

Before deploying a J2EE application in the JOnAS application server, first package its components in
an EAR file as explained in Chapter 23 EAR Packaging.

For Apache ANT, refer to the target EAR in the $JONAS_ROOT/examples/earsample/build.xml file.
Next, install the EAR file into the $JONAS_ROOT/apps directory.

Then, check the configuration. Before running the application, check that the e jb, web and ear ser-
vices are present in the jonas.services property.

The name of the EAR file can be added in the jonas.service.ear.descriptors section.
Finally, run the application Server:

jonas start

The application components are deployed in EJB and web containers created during the startup. If the

EAR file was not added in the jonas.service.ear.descriptorslist, the application components
can be dynamically deployed using the jonas admin command or JonasAdmin tool.



154 Chapter 15. Application Deployment and Installation Guide



lll. Web Application Programmer’s Guide

This section contains information for the Web Application programmer; that is, the person in charge
of developing the web components on the server side.

The Chapter 16 Developing Web Components guide explains how to construct Web components, as
well as how to access Enterprise Beans from within the Web Components.

Deployment descriptor specification is presented in Chapter 17 Defining the Web Deployment De-
scriptor.

Web components can be used as Web application components or as J2EE application components. In
both cases, a WAR file will be created, but the content of this file is different in the two situations. In
the first case, the WAR contains the Web components and the Enterprise Beans. In the second case,
the WAR does not contain the Enterprise Beans. The EJB JAR file containing the Enterprise Beans is
packed together with the WAR file containing the Web components, into an EAR file.

Principles and tools for providing WAR files are presented in Chapter 18 WAR Packaging and Chapter
15 Application Deployment and Installation Guide.

Table of Contents

16. Developing Web Components 157
17. Defining the Web Deployment Descriptor 163
18. WAR Packaging 167







) rednat Chapter 16.
Developing Web Components

This chapter is for the Web Component provider; that is, the person in charge of developing the web
components on the server side.

16.1. Introduction to Web Component Development

A Web Component is a generic term that denotes both JSP pages and servlets. Web components are
packaged in a . war file and can be deployed in a JOnAS server via the web service. Web components
can be integrated in a J2EE application by packing the .war file in an . ear file (refer to Chapter 22
Defining the EAR Deployment Descriptor).

The JOnAS distribution includes a Web application example called The EarSample example (see
http://www.objectweb.org/jonas/current/examples/earsample).

The directory structure of this application is as follows:

etc/xml Contains the web . xm1 file that describes
the web application.

etc/resources/web Contains HTML pages and images; JSP
pages can also be placed here.

src/org/objectweb/earsample/servlets Servlet sources

src/org/objectweb/earsample/beans Beans sources

If beans from another application will be used, the bean directory is not needed.

16.2. The JSP Pages

Java Server Pages (JSP) is a technology that allows regular, static HTML, to be mixed with
dynamically-generated HTML written in Java programming language for encapsulating the logic that
generates the content for the page. Refer to the Java Server Pages (http:/java.sun.com/products/jsp/)
and the Quickstart Guide (http://java.sun.com/products/jsp/docs.html) for more details.

16.2.1. Example

The following example shows a sample JSP page that lists the content of a cart.

<!-- Get the session —-->
<%Q@ page session="true" %

<!-- The import to use -->
<%Q@ page import="java.util.Enumeration" $>
<%@ page import="java.util.Vector" 5>
<html>
<body bgcolor="white">
<hl>Content of your cart</hl><br>
<table>
<!-- The header of the table —->
<tr bgcolor="black">



158 Chapter 16. Developing Web Components

<td><font color="lightgreen">Product Reference</font></td>
<td><font color="lightgreen">Product Name</font></td>
<td><font color="lightgreen">Product Price</font></td>

</tr>
<!-- Each iteration of the loop display a line of the table -->
<%

Cart cart = (Cart) session.getAttribute("cart");

Vector products = cart.getProducts();
Enumeration enum = products.elements();
// loop through the enumeration
while (enum.hasMoreElements()) {
Product prod = (Product) enum.nextElement ();
5>
<tr>
<td><%=prod.getReference () $></td>
<td><%=prod.getName () $></td>
<td><%=prod.getPrice()$></td>
</tr>
<%
} // end loop
5>
</table>
< /body>
</html>

It is a good idea to hide all the mechanisms for accessing EJBs from JSP pages by using a proxy
Java bean, referenced in the JSP page by the usebean special tag. This technique is shown
in the alarm example http://www.objectweb.org/jonas/current/examples/alarm/web/secured,
where the .jsp files communicate with the EJB via a proxy Java bean ViewProxy.java
http://www.objectweb.org/jonas/current/examples/alarm/beans/org/objectweb/alarm/beans/
ViewProxy.java.

16.3. The Servlets

Servlets are modules of Java code that run in an application server for answering client requests.
Servlets are not tied to a specific client-server protocol. However, they are most commonly used with
HTTP, and the word "servlet" is often used as referring to an "HTTP servlet.”

Servlets make use of the Java standard extension classes in the packages javax.servlet (the basic
servlet framework) and javax.servlet.http (extensions of the servlet framework for servlets that
answer HTTP requests).

Typical uses for HTTP servlets include:

+ processing and/or storing data submitted by an HTML form,
+ providing dynamic content generated by processing a database query,
+ managing information of the HTTP request.

For more details refer to the Java Servlet Technology pages (http://java.sun.com/products/servlet/).



Chapter 16. Developing Web Components 159

16.3.1. Example

The following example is a sample of a servlet that lists the content of a cart. This example is the
servlet version of the previous JSP page example.

import java.util.Enumeration;

import java.util.Vector;

import java.io.PrintWriter;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class GetCartServlet extends HttpServlet {

protected void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html");
PrintWriter out = res.getWriter();

out.println ("<html><head><title>Your
cart</title></head>");

out.println ("<body>");

out.println("<hl>Content of your cart</hl><br>");

out.println("<table>");

// The header of the table
out.println("<tr>");
out.println ("<td><font

color="lightgreen">Product Reference</font></td>");
out.println("<td><font

color="lightgreen">Product Name</font><L/td>");
out.println("<td><font

color="lightgreen">Product Price</font><L/td>");
out.println("</tr>");

// Each iteration of the loop display a line of the table
HttpSession session = reqg.getSession (true);
Cart cart = (Cart) session.getAttribute("cart");
Vector products = cart.getProducts();
Enumeration enum = products.elements();
while (enum.hasMoreElements()) {
Product prod = (Product) enum.nextElement ();
int prodId = prod.getReference();
String prodName = prod.getName () ;
float prodPrice = prod.getPrice();
out.println("<tr>");
out.println("<td>" + prodId + </td>);
out.println("<td>" + prodName + </td>);
out.println("<td>" + prodPrice + </td>);
out.println("</tr>");

}

out.println("</table>");
out.println("</body>");
out.println("</html>");
out.close();



160 Chapter 16. Developing Web Components

16.4. Accessing an EJB from a Servlet or JSP Page

Starting with JOnAS 2.6 with its web container service, it is possible to access an enterprise Java bean
and its environment in a J2EE-compliant way.

The following sections describe:

1. How to access the Remote Home interface of a bean.
2. How to access the Local Home interface of a bean.
3. How to access the environment of a bean.

4. How to start transactions in servlets.

Note

All the following code examples are taken from the The EarSample example provided in the JOnAS
distribution.

16.4.1. Accessing the Remote Home Interface of a Bean:

In this example the servlet gets the Remote Home interface oOpHome registered in JNDI using an EJB
reference, then creates a new instance of the Session Bean:

import javax.naming.Context;
import javax.naming.InitialContext;

//remote interface
import org.objectweb.earsample.beans.secusb.Op;
import org.objectweb.earsample.beans.secusb.OpHome;

Context initialContext = null;
try |
initialContext = new InitialContext ();
} catch (Exception e) {
out.print ("<1li>Cannot get initial context for JNDI: ");
out.println(e + "</1i>");
return;

}
// Connecting to OpHome through JNDI
OpHome opHome = null;
try |
opHome = (OpHome)
PortableRemoteObject.narrow(initialContext.lookup \
("java:comp/env/ejb/Op"), OpHome.class);
} catch (Exception e) {
out.println("<li>Cannot lookup java:comp/env/ejb/Op:
+ e+ "</1i>");
return;
}
// OpBean creation
Op op = null;
try {
op = opHome.create ("Userl");
} catch (Exception e) {
out.println("<li>Cannot create OpBean: " + e + "</1li>");
return;



Chapter 16. Developing Web Components 161

Note that the following elements must be set in the web . xm1 file tied to this web application:

<ejb-ref>
<ejb-ref-name>ejb/0Op</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.objectweb.earsample.beans.secusb.OpHome< /home>
<remote>org.objectweb.earsample.beans.secusb.Op</remote>
<ejb-link>secusb. jar#0p</ejb-1link>

</ejb-ref>

16.4.2. Accessing the Local Home of a Bean:

The following example shows how to obtain a local home interface OpLocalHome using an EJB local
reference:

//local interfaces
import org.objectweb.earsample.beans.secusb.OplLocal;
import org.objectweb.earsample.beans.secusb.OpLocalHome;

// Connecting to OpLocalHome thru JNDI

OpLocalHome opLocalHome = null;
try {
opLocalHome = (OpLocalHome)

initialContext.lookup ("java:comp/env/ejb/OpLocal™) ;
} catch (Exception e) {
out.println("<1li>Cannot lookup java:comp/env/ejb/OpLocal: "
+ e + "</1i>");
return;

}
This is found in the web . xm1 file:

<ejb-local-ref>
<ejb-ref-name>ejb/OpLocal</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>org.objectweb.earsample.beans.secusb.OpLocalHome

</local-home>

<local>org.objectweb.earsample.beans.secusb.OplLocal</local>
<ejb-link>secusb. jar#0p</ejb-1link>

</ejb-local-ref>

16.4.3. Accessing the Environment of the Component

In this example, the servlet seeks to access the component’s environment:

String envEntry = null;
try {
envEntry = (String)
initialContext.lookup ("java:comp/env/envEntryString") ;
} catch (Exception e) {
out.println("<li>Cannot get env-entry on JNDI " + e + "</1i>");
return;

}
This is the corresponding part of the web . xm1 file:

<env-entry>



162 Chapter 16. Developing Web Components

<env-entry-name>envEntryString</env-entry-name>
<env-entry-value>This is a string from env-entry</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

16.4.4. Starting Transactions in Servlets

The servlet wants to start transactions via the UserTransaction:
import javax.transaction.UserTransaction;

// We want to start transactions from client: get UserTransaction

UserTransaction utx = null;
try {
utx = (UserTransaction)

initialContext.lookup ("java:comp/UserTransaction");
} catch (Exception e) {
out.println("<li>Cannot lookup java:comp/UserTransaction:
+ e + "</1i>");
return;

n

try {
utx.begin();
opLocal.buy (10);
opLocal.buy (20);
utx.commit () ;

} catch (Exception e) {
out.println("<li>exception during lst Tx: " + e + "</1i>");
return;



E) redhat Chapter 17.
Defining the Web Deployment Descriptor

This chapter is for the Web component provider; that is, the person in charge of developing the Web
components on the server side.

17.1. Principles

The Web component programmer is responsible for providing the deployment descriptor
associated with the developed web components. The Web component provider’s responsibilities
and the application assembler’s responsibilities are to providle an XML deployment
descriptor that conforms to the deployment descriptor’s XML schema as defined in the
Java Servlet Specification Version 2.4. (Refer to $JONAS_ROOT/xml/web-app_2_4.xsd or
http://jonas.objectweb.org/current/xml/web-app_2_4.xsd).

To customize the Web components, information not defined in the standard XML deployment descrip-
tor may be needed. For example, the information may include the mapping of the name of referenced
resources to its JNDI name. This information can be specified during the deployment phase, within
another XML deployment descriptor that is specific to JOnAS. The JOnAS-specific deployment de-
scriptor’s XML schema is located in $JONAS_ROOT/xml/jonas-web-app_X_Y .xsd. The file name
of the JOnAS-specific XML deployment descriptor must be the file name of the standard XML de-
ployment descriptor prefixed by “jonas-"".

The parser gets the specified schema via the classpath (schemas are packaged in the
$JONAS_ROOT/1ib/common/ow_jonas. jar file).

The standard deployment descriptor (web.xm1) should contain structural information that includes
the following:

+ The servlet’s description (including servlet’s name, servlet’s class or jsp-file, servlet’s initialization
parameters)

+ Environment entries

+ EJB references

+ EJB local references

+ Resource references

+ Resource env references.

The JOnAS-specific deployment descriptor (jonas-web.xml) may contain information that
includes:

+ The JNDI name of the external resources referenced by a Web component

+ The JNDI name of the external resources environment referenced by a Web component

+ The JNDI name of the referenced beans by a Web component

+ The name of the virtual host on which to deploy the servlets

+ The name of the context root on which to deploy the servlets

+ The compliance of the web application classloader to the Java 2 delegation model or not.

<host> element: If the configuration file of the web container contains virtual hosts, the host on
which the WAR file is deployed can be set.

<context-root> element: You should specify the name of the context on which the application
will be deployed. If it is not specified, the context-root used can be one of the following:



164 Chapter 17. Defining the Web Deployment Descriptor

« If the WAR is packaged into an EAR file, the context-root used is the context specified in the
application.xml file.

« If the WAR is standalone, the context-root is the name of the WAR file (that is, the context-root is
/jadmin for jadmin.war).

If the context-root is / or empty, the web application is deployed as ROOT context (that is,
http://localhost:9000/).

<Jjava2-delegation-model>> element: Set the compliance to the Java 2 delegation model.

« If true: the web application context uses a classloader, using the Java 2 delegation model (ask parent
classloader first).

« If false: the class loader searches inside the web application first, before asking parent class loaders.

17.2. Examples of Web Deployment Descriptors

+ Example of a standard Web Deployment Descriptor (web . xm1):
<?xml version="1.0" encoding="ISO-8859-1"7?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://Jjava.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<servlet>
<servlet-name>Op</servlet-name>
<servlet-class>
org.objectweb.earsample.servlets.ServletOp
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Op</servlet-name>
<url-pattern>/secured/Op</url-pattern>
</servlet-mapping>

<security-constraint>
<web-resource-collection>
<web-resource-name>Protected Area</web-resource-name>

< !-- Define the context-relative URL(s) to be protected -->
<url-pattern>/secured/*</url-pattern>
<!-- If you list http methods, only those methods

are protected -->
<http-method>DELETE< /http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>
< /web-resource-collection>
<auth-constraint>
<!-- Anyone with one of the listed roles
may access this area -->
<role-name>tomcat</role-name>
<role-name>rolel</role-name>
</auth-constraint>
</security-constraint>

<!-- Default login configuration uses BASIC authentication —-->



Chapter 17. Defining the Web Deployment Descriptor 165

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Example Basic Authentication Area</realm-name>
</login-config>

<env-entry>
<env-entry-name>envEntryString</env-entry-name>
<env-entry-value>
This is a string from the env-entry
</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>
</env-entry>

<!-- reference on a remote bean without ejb-link-->
<ejb-ref>
<ejb-ref-name>ejb/Op</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.objectweb.earsample.beans.secusb.OpHome</home>
<remote>org.objectweb.earsample.beans.secusb.Op</remote>
</ejb-ref>

<!-- reference on a remote bean using ejb-link-->

<ejb-ref>
<ejb-ref-name>ejb/EjbLinkOp</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.objectweb.earsample.beans.secusb.OpHome< /home>
<remote>org.objectweb.earsample.beans.secusb.Op</remote>
<ejb-link>secusb. jar#0p</ejb-link>

</ejb-ref>

<!-- reference on a local bean —->

<ejb-local-ref>
<ejb-ref-name>ejb/OpLocal</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home

>org.objectweb.earsample.beans.secusb.OpLocalHome

</local-home>
<local>org.objectweb.earsample.beans.secusb.Oplocal</local>
<ejb-link>secusb. jar#0p</ejb-link>

</ejb-local-ref>

< /web-app>

+ Example of a specific Web Deployment Descriptor (jonas-web . xml1):
<?xml version="1.0" encoding="IS0O-8859-1"?>

< jonas-web-app xmlns="http://www.objectweb.org/jonas/ns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.objectweb.org/jonas/ns
http://www.objectweb.org/jonas/ns/jonas-web-app_4_0.xsd" >

<!-- Mapping between the referenced bean and its JNDI name,
override the ejb-link, if there is one in the associated
ejb-ref in the standard Web Deployment Descriptor —-->
<Jjonas-eJjb-ref>
<ejb-ref-name>ejb/Op</ejb-ref-name>
< jndi-name>OpHome</jndi-name>
</Jjonas-ejb-ref>

<!-- the virtual host on which deploy the web application —-->
<host>localhost</host>

<!-- the context root on which deploy the web application —-->



166

Chapter 17. Defining the Web Deployment Descriptor

<context-root>/web-application</context-root>
</jonas-web-app>

17.3. Tips

Although some characters, such as ">", are legal, it is good practice to replace them with XML entity
references. The following is a list of the predefined entity references for XML:

< &lt; less than

> &gt; greater than

& &amp; ampersand

’ &apos; | apostrophe

" &quot; quotation mark




E) redhat Chapter 18.
WAR Packaging

This chapter is for the Web component provider; that is, the person in charge of developing the web
components on the server side. It describes how the web components should be packaged.

18.1. Principles

Web components are packaged for deployment in a standard Java programming language Archive file
called a war file (Web ARchive), which is a jar similar to the package used for Java class libraries.
A war has a specific hierarchical directory structure. The top-level directory of a war is the document
root of the application.

The document root is where JSP pages, client-side classes and archives, and static web resources are
stored. The document root contains a subdirectory called WEB—INF, which contains the following files
and directories:

+ web.xml: The standard xml deployment descriptor in the format defined in the Java Servlet 2.4
Specification. Refer to $JONAS_ROOT/xml/web-app_2_4.xsd.

+ jonas-web.xml: The optional JOnAS-specific XML deployment descriptor in the format defined
in $JONAS_ROOT/xml/jonas-web_X_Y.xsd.

+ classes: a directory that contains the servlet classes and utility classes.

+ lib:adirectory that contains JAR archives of libraries (tag libraries and any utility libraries called
by server-side classes). If the Web application uses Enterprise Beans, it can also contain e jb-jars.
This is necessary to give to the Web components the visibility of the EJB classes. However, if the
war is intended to be packed in an EAR, the e jb-jars must not be placed here. In this case, they
are directly included in the EAR. Due to the use of the class loader hierarchy, Web components have
the visibility of the EJB classes. Details about the class loader hierarchy are described in Chapter 5
JOnAS Class Loader Hierarchy.

18.1.1. Example

Before building a war file, the Java source files must be compiled to obtain the class files (located in
the WEB-INF/classes directory) and the two XML deployment descriptors must be written.

Then, the war file (web-application.war)is built using the jar command:

cd your_webapp directory
jar cvf web-application.war *

During the development process, an “unpacked version” of the war file can be used. Refer to Section
3.5.3 Configuring the WEB Container Service.



168 Chapter 18. WAR Packaging



IV. J2EE Client Application Programmer’s Guide

This section contains information for the J2EE Client programmer; that is, the person in charge of
developing the client components on the client side.

Table of Contents

19. Launching J2EE Client Applications 171
20. Defining the Client Deployment Descriptor 173
21. Client Packaging 177







) rednat Chapter 19.
Launching J2EE Client Applications

This chapter is for the Client Component provider; that is, the person in charge of developing the
client components on the client side.

19.1. Launching Clients
The J2EE client application can be:

+ A standalone client in a . jar file
+ A class name, which must be found in the CLASSPATH
+ A client bundle in an .ear file. An .ear file can contain many Java clients.

All the files required to launch the client container are in the JONAS_ROOT/1lib/client. jar file.
This jar includes a manifest file with the name of the class to launch. To launch the client container,

simply type:
java —-jar $JONAS_ROOT/lib/client.jar -?

This launches the client container and display usage information about this client container.

To launch the client container on a remote computer, copy the client.jar and invoke the client
container by typing:

java -jar path to_your/client.jar

The client that must be launched by the client container is given as an argument of the client container.
For example:

java —-jar client.jar myApplication.ear
or

java —-jar client.jar myClient.jar

19.2. Configuring the Client Container

19.2.1. JNDI Access

Defining the JNDI access and the protocol to use is an important part of configuration. The JOnAS
server, as well as the ClientContainer, uses the values specified in the carol.properties file. This
file can be used at different levels. The carol.properties is searched with the following priority
(high to low):

+ The carol.properties specified by the —~carolFile argument to the client container.
+ The carol.properties packaged into the client application (the JAR client).

+ If not located previously, it will use the carol.properties contained in the
JONAS_ROOT/lib/client.jar.



172 Chapter 19. Launching J2EE Client Applications

A convenient way is to update the carol.properties of your client. jar with your customized
carol.properties file. Thatis, jar -uf client.jar carol.properties

19.2.2. Trace Configuration

The client container client . jar includes a traceclient .properties file. This is the same file
as the one in JONAS_ROOT/conf directory.

A different configuration file can be used for the traces by specifying the parameter -traceFile
when invoking the client container.

The file in the client.jar can also be replaced with the command: jar -uf client.jar
traceclient.properties

19.2.3. Classpath Configuration

Some jars/classes can be added to the client container. For example, if a class requires some extra
libraries/classes, you can use the —cp path/to/classes option.

The classloader of the client container will use the libraries/classes provided by the -cp flag.

19.2.4. Specifying the Client to Use (EAR Case)

An EAR can contain many Java clients, which are described in the application.xml file inside the
<module>< java> elements.

To invoke the client container with an ear, such as java —-jar client.jar my.ear, specify the
Java client to use if there are many clients. Otherwise, it will take the first client.

To specify the JAR client to use from an EAR, use the argument —-jarClient and supply the name
of the client to use.

The earsample example in the JOnAS examples has two Java clients in its ear file.

19.2.5. Specifying the Directory for Unpacking the EAR (EAR Case)

By default, the client container will use the system property java.io.tmpdir. To use another tem-
porary directory, specify the path by giving the argument —tmpDi rto the client container.

19.3. Examples

The earsample and jaasclient examples of the JOnAS examples are packaged for use by the
client container. The first example demonstrates the client inside an .ear file. The second example
demonstrates the use of a standalone client.



5) redhat
Chapter 20.

Defining the Client Deployment Descriptor

This chapter is for the Client component provider; that is, the person in charge of developing the Client
components on the client side.

20.1. Principles

The Client component programmer is responsible for providing the deployment descriptor associated
with the developed client components.

The client component provider’s responsibilities and the Application Assembler’s
responsibilities are to provide an XML deployment descriptor that conforms to the
deployment descriptor’s XML DTD as defined in the Java Application Client Specification
Version 1.4. (Refer to $JONAS_ROOT/xml/application-client_1_4.xsd or
http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd.)

To customize the Client components, information not defined in the standard XML deployment de-
scriptor may be needed. Such information might include, for example, the mapping of the name of
referenced resources to its JNDI name. This information can be specified during the deployment phase
within another XML deployment descriptor that is specific to JOnAS. The JOnAS-specific deploy-
ment descriptor’s XML schema is located in $JONAS_ROOT/xml/jonas-client_X_Y.xsd. The
file name of the JOnAS-specific XML deployment descriptor must be jonas-client.xml.

JOnAS interprets the < !DOCTYPE>> tag at the parsing of the deployment descriptor XML files. The
parser first tries to get the specified DTD via the classpath, then it uses the specified URL (or path).

The parser gets the specified schema via the classpath (schemas are packaged in the
$JONAS_ROOT/1ib/common/ow_Jjonas. jar file).

The standard deployment descriptor (application-client.xml) should contain structural infor-
mation that includes the following:

+ A Client description

» Environment entries

« EJB references

» Resource references

+ Resource env references

» The callback handler to use.

The JOnAS-specific deployment descriptor (jonas-client.xml) may contain information that in-
cludes the following:

+ The JNDI name of the external resources referenced by a Client component
+ The JNDI name of the external resources environment referenced by a Client component
+ The JNDI name of the beans referenced by a Client component

+ The security aspects including the JAAS file, the JAAS entry, and a login/password to use for a
specific callback handler.



174 Chapter 20. Defining the Client Deployment Descriptor

20.2. Examples of Client Deployment Descriptors

+ Example of a standard Client Deployment Descriptor (application-client.xml):
<?xml version="1.0" encoding="UTF-8"?>

<application-client xmlns="http://Jjava.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd"
version="1.4">

<display-name>Client of the earsample</display-name>
<description>client of the earsample</description>

<env-entry>
<env-entry-name>envEntryString</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>Test of envEntry of application-client.xml
file</env-entry-value>
</env-entry>

<ejb-ref>
<ejb-ref-name>ejb/Op</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.objectweb.earsample.beans.secusb.OpHome</home>
<remote>org.objectweb.earsample.beans.secusb.0Op</remote>
<ejb-link>secusb. jar#EarOp</ejb-link>

</ejb-ref>

<resource-ref>
<res-ref-name>url/jonas</res-ref-name>
<res-type>java.net.URL<L/res-type>
<res—auth>Container</res-auth>
</resource-ref>

<callback-handler>
org.objectweb. jonas.security.auth.callback.LoginCallbackHandler
</callback-handler>

</application-client>

+ Example of a specific Client Deployment Descriptor (jonas—-client.xml):
<?xml version="1.0" encoding="UTF-8"7?>
<jonas-client xmlns="http://www.objectweb.org/jonas/ns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.objectweb.org/jonas/ns
http://www.objectweb.org/jonas/ns/jonas-client_4_0.xsd">

<Jjonas-client>

< jonas-resource>
<res-ref-name>url/jonas</res-ref-name>
<jndi-name>http://jonas.objectweb.org</jndi-name>
</jonas-resource>

<jonas-security>
<jaasfile>jaas.config</jaasfile>
<jaasentry>earsample</jaasentry>
<username>jonas</username>
<password>jonas</password>

</Jjonas-security>



Chapter 20. Defining the Client Deployment Descriptor

</jonas-client>

20.3. Tips

Although some characters, such as ">", are legal, it is good practice to replace them with XML entity

references.

The following is a list of the predefined entity references for XML:

< &lt; less than

> &gt; greater than
& &amp; ampersand
’ &apos; apostrophe

&quot;

quotation mark

175



176 Chapter 20. Defining the Client Deployment Descriptor



E) redhat Chapter 21.
Client Packaging

This chapter is for the Client component provider; that is, the person in charge of developing the client
components on the client side. It describes how the client components should be packaged.

21.1. Principles

Client components are packaged for deployment in a standard Java programming language Archive
file called a JAR file (Java ARchive). The document root contains a subdirectory called META-INF,
which contains the following files and directories:

+ application-client.xml: The standard XML deployment descriptor in the format defined in
the J2EE 1.3 Specification. Refer to $JONAS_ROOT/xml/application-client_1_4.xsd.

+ jonas-client.xml: The optional JOnAS-specific, XML deployment descriptor in the format
defined in $JONAS_ROOT/xml/jonas-client_X_Y.xsd.

The manifest of this client JAR must contain the name of the class to launch (containing the main
method). This is defined by the value of the Main-Class attribute of the manifest file. For a stan-
dalone client (not bundled in an EAR), all the EJB classes (except the skeleton) on which lookups will
be performed must be included.

21.1.1. Client Packaging Example

Two examples of building a Java client are provided:

+ The first is the build.xml of the earsample example with a Java client inside the EAR (see
http://jonas.objectweb.org/current/examples/earsample/build.xml). Refer to the clientljar and
client2jar targets.

+ The second is the build.xml of the jaasclient example with a Java standalone client, which
performs a lookup on an EJB.

See http://jonas.objectweb.org/current/examples/jaasclient/build.xml; refer to the clientjars target.



178 Chapter 21. Client Packaging



V. J2EE Application Assembler’s Guide

This section contains information for the J2EE Application Assembler; that is, the person in charge
of combining one or more components (ejb-jars and/or wars) to create a J2EE application.

Table of Contents

22. Defining the EAR Deployment Descriptor 181
23. EAR Packaging 183







5) redhat Chapter 22.
Defining the EAR Deployment Descriptor

This chapter is for the Application Provider; that is, the person in charge of combining one or more
components (EJB-JARs and/or WARs) to create a J2EE application.

22.1. Principles

The application programmer is responsible for providing the deployment descriptor associated with
the developed application (Enterprise ARchive). The Application Assembler’s responsibilities is to
provide a XML deployment descriptor that conforms to the deployment descriptor’s XML schema as
defined in the J2EE specification version 1.4. Refer to $JONAS_ROOT/xml/application_1_4.xsd
(http://jonas.objectweb.org/current/xml/application_1_4.xsd.)

To deploy J2EE applications on the application server, all information is contained in one
XML deployment descriptor. The file name for the application XML deployment descriptor is
application.xml and it must be located in the top level META-INF directory.

The parser gets the specified schema via the classpath (schemas are packaged in the
$JONAS_ROOT/1ib/common/ow_7jonas. jar file).

Some J2EE application examples are provided in the JOnAS distribution:

» The Alarm demo

+ The Cmp2 example

+ The EarSample example

+ The Blueprints Petstore application

The standard deployment descriptor should contain structural information that includes the following:

« EJB components

+ Web components

+ Client components

+ Alternate Deployment Descriptor for theses components
+ Security role.

There is no JOnAS-specific deployment descriptor for the Enterprise ARchive.

22.2. Simple Example of Application Deployment Descriptor

<application xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
version="1.4">

<display-name>Simple example of application</display-name>
<description>Simple example</description>

<module>
<ejb>ejbl.jar</ejb>



182

</module>

<module>
<ejb>ejb2.jar</ejb>

</module>

<module>
<web>
<web-uri>web.war</web-uri>
<context-root>web</context-root>
</web>
</module>

</application>

22.3. Advanced Example

This is an advanced example of an Application Deployment Descriptors with alternative DD and

security.

Chapter 22. Defining the EAR Deployment Descriptor

<application xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
version="1.4">

<display-name>Ear Security</display-name>
<description>Application with alt-dd and security</description>
<module>
<web>
<web-uri>admin.war</web-uri>
<context-root>admin</context-root>
</web>
</module>
<module>
<ejb>ejb.jar</ejb>

<alt-dd>altdd.xml</alt-dd>

</module>
<security-role>

<role-name>admin</role-name>
</security-role>

</application>

22.4. Tips

Although some characters, such as ">", are legal, it is good practice to replace them with XML entity

references.

The following is a list of the predefined entity references for XML:

< &lt; less than

> &gt; greater than
& &amp; ampersand
’ &apos; apostrophe

&quot;

quotation mark




E) redhat Chapter 23.
EAR Packaging

This chapter is for the Application Assembler; that is, the person in charge of combining one or more
J2EE components (EJB-JARs and/or WARS) to create a J2EE application. It describes how the J2EE
components should be packaged to create a J2EE application.

23.1. Principles

J2EE applications are packaged for deployment in a standard Java programming language Archive
file called an EAR file (Enterprise ARchive). This file can contain the following:

The web components (WAR)

One or more WARSs that contain the web components of the J2EE application. Due to the class
loader hierarchy, when the WARs are packaged in a J2EE application, it is not necessary to
package bean classes in the WEB-INF/1ib directory.

Details about this class loader hierarchy are described in Chapter 5 JOnAS Class Loader Hierar-
chy.

The beans (EJB-JAR)
One or more EJB-JARs, which contain the beans of the J2EE application.

The libraries (JAR)
One or more jars which contain the libraries (tag libraries and any utility libraries) used for the
J2EE application.

The J2EE deployment descriptor

The standard XML deployment descriptor in the format defined in the J2EE
1.4 specification (refer to $JONAS_ROOT/xml/application_1_5.xsd or
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd). This deployment descriptor must be stored
with the name META-INF/application.xml in the EAR file.

23.1.1. EAR Packaging Example

Before building an EAR file for a J2EE application, the EJB-JARs and the WARSs that will be packaged
in the J2EE application must be built and the XML deployment descriptor (application.xml) must
be written.

Then, the EAR file (< j2ee-application>.ear) can be built using the jar command:

cd <your_j2ee_application_directory>
jar cvf <j2ee-application>.ear *



184 Chapter 23. EAR Packaging



VI. Advanced Topics

This section contains information for advanced JOnAS users.

Table of Contents
24. JOnAS Services

25. JOnAS and the Connector Architecture

26. JMS User’s Guide

27. Ant EJB Tasks: Using EJB-JAR

28. Login Modules in a Java Client
29. Web Services with JOnAS

187
193
197
211
215
217






E) redhat Chapter 24.
JONAS Services

This chapter is intended for advanced JOnAS users who require that some “external” services run
along with the EJB server. A service is something that may be initialized, started, and stopped. JOnAS
itself already defines a set of services, some of which are cornerstones of the EJB Server. The JOnAS
pre-defined services are listed in Section 3.5 Configuring JOnAS Services.

EJB application developers may need to access other services, for example another Web container or
a Versant container, for their components. Thus, it is important that such services be able to run along
with the EJB server. To achieve this, it is possible to define them as JOnAS services.

This chapter describes how to define a new JOnAS service and how to specify which service should
be started with the EJB server.

24.1. Introducing a New Service

The customary way to define a new JOnAS service is to encapsulate it in a class whose interface is
known by JOnAS. More precisely, such a class provides a way to initialize, start, and stop the service.
Then, the jonas.properties file must be modified to make JOnAS aware of this service.

24.1.1. Defining the Service Class

A JOnAS service is represented by a class that implements the interface
org.objectweb. jonas.service.Service,and, thus should implement the following methods:

* public void init (Context ctx) throws ServiceException;
* public void start () throws ServiceException;

* public void stop() throws ServiceException;

e public boolean isStarted();

e public String getName () ;

e public void setName (String name) ;

It should also define a public constructor with no argument.

These methods will be called by JOnAS for initializing, starting, and stopping the service. Config-
uration parameters are provided to the initialization method through a naming context. This naming
context is built from properties defined in the jonas.properties file as explained in Section 24.1.2
Modifying the jonas.properties File.

The Service class should look like the following:

package a.b;
import javax.naming.Context;
import javax.naming.NamingException;
import org.objectweb.jonas.service.Service;
import org.objectweb. jonas.service.ServiceException;
public class MyService implements Service {
private String name = null;
private boolean started = false;
public void init (Context ctx) throws ServiceException {
try {



188 Chapter 24. JOnAS Services

String pl = (String) ctx.lookup ("Jjonas.service.servl.pl");

} catch (NamingException e) {
throw new ServiceException("....", e);

public void start () throws ServiceException {
this.started = true;
}
public void stop() throws ServiceException {
if (this.started) {
this.started = false;

public boolean isStarted() {
return this.started;

}

public String getName () {
return this.name;

}

public void setName (String name) {
this.name = name;

}

24.1.2. Modifying the jonas.properties File

The service is defined and its initialization parameters specified in the jonas.properties file. First,
choose a name for the service (for example, "serv1"), then do the following:

+ Add this name to the jonas. services property; this property defines the set of services (comma-
separated) that will be started with JOnAS, in the order of this list.

+ Add a jonas.service.servl.class property specifying the service class.

+ Add as many jonas.service.servl.xXx properties specifying the service initialization param-
eters, as will be made available to the service class via the Context argument of the init method.

This is illustrated as follows:

jonas.services ...l ,servl
jonas.service.servl.class a.b.MyService
jonas.service.servl.pl value

24.1.3. Using the New Service

The new service has been given a name in jonas.properties. With this name, it is possible to
get a reference on the service implementation class by using the ServiceManager method:
getService (name). The following is an example of accessing a Service:

import org.objectweb. jonas.service.ServiceException;
import org.objectweb. jonas.service.ServiceManager;

MyService sv = null;



Chapter 24. JOnAS Services 189

// Get a reference on MyService.
try {

sv = (MyService) ServiceManager.getInstance () .getService ("servl");
} catch (ServiceException e) {

Trace.errln ("Cannot find MyService:"+e);

}

24.1.4. Adding the Class of the New Service to JOnAS

Package the class of the service into a . jar file and add the JAR in the JONAS_ROOT/1ib/ext
directory. All the libraries required by the service can also be placed in this directory.

24.2. Advanced Understanding

Refer to the JOnAS sources for more details about the classes mentioned in this section.

24.2.1. JONnAS built-in Services

The existing JOnAS services are the following:

Service name Service class
registry RegistryServicelmpl
ejb EJBServiceImpl

ear EarServicelmpl

dbm DatabaseServiceImpl
jms JmsServicelmpl

jmx JmxServicelmpl

jtm TransactionServicelmpl
mail MailServiceImpl
resource ResourceServicelmpl
security JonasSecurityServicelmpl
ws AxisWSService

If all of these services are required, they will be launched in the following order: registry, jmx,
security, jtm, dom, mail, jms, resource, ejb, ws, web, ear.

jmx, security, dbm, mail, resource are optional when you are using service e jb.

registry must be launched first.

N otes

For compatibility with previous versions of JOnAS, if registry is not set as the first service to launch,
JONAS automatically launches the registry service. Thus, the jtm service must be launched before
these services.

dbm, jms, resource, and ejb depend on jtm.



190 Chapter 24. JOnAS Services

ear depends on ejb and web (that provide the ejb and web containers), thus these services must be
launched before the ear service.

ear and web depend on ws, thus the ws service must be launched before the ear and web services.

It is possible to launch a stand-alone Transaction Manager with only the registry and jtm services.
In this case, a jonas.properties file looks like the following:
jonas.services registry, jmx, security, jtm, dbm, mail, jms, ejb, resource, servl
jonas.service.registry.class \

org.objectweb. jonas.registry.RegistryServiceImpl

jonas.service.registry.mode automatic

jonas.service.dbm.class org.objectweb. jonas.dbm.DatabaseServiceImpl
jonas.service.dbm.datasources Oraclel

jonas.service.ejb.class org.objectweb. jonas.container.EJBServiceImpl
jonas.service.ejb.descriptors ejb-jar.jar
jonas.service.ejb.parsingwithvalidation true

jonas.service.ejb.mdbthreadpoolsize 10
jonas.service.web.class \

org.objectweb. jonas.web.catalina.CatalinaJWebContainerServiceImpl
jonas.service.web.descriptors war.war

jonas.service.web.parsingwithvalidation true

jonas.service.ear.class org.objectweb. jonas.ear.EarServiceImpl
jonas.service.ear.descriptors j2ee-application.ear
jonas.service.ear.parsingwithvalidation true

jonas.service.jms.class org.objectweb. jonas. jms.JmsServiceImpl
jonas.service. jms.mom org.objectweb. jonas_jms.JmsAdminForJoram
jonas.service.jms.collocated true
jonas.service. jms.url joram://localhost:16010
jonas.service.jmx.class org.objectweb. jonas. jmx.JmxServiceImpl
jonas.service.jtm.class \

org.objectweb. jonas.jtm.TransactionServiceImpl
jonas.service. jtm.remote false
jonas.service. jtm.timeout 60
jonas.service.mail.class org.objectweb. jonas.mail.MailServiceImpl

jonas.service.mail.factories MailSessionl

jonas.service.security.class \
org.objectweb. jonas.security.JonasSecurityServiceImpl

jonas.service.resource.class \
org.objectweb. jonas.resource.ResourceServiceImpl
jonas.service.resource.resources MyRA

jonas.service.servl.class a.b.MyService
jonas.service.servl.pl John



Chapter 24. JOnAS Services 191

24.2.2. The ServiceException

The org.objectweb. jonas.service.ServiceException exception is defined for Services. Its
type is java.lang.RuntimeException and it can encapsulate any java.lang.Throwable.

24.2.3. The ServiceManager

The org.objectweb. jonas.service.ServiceManager class is responsible for creating, initial-
izing, and launching the services. It can also return a service from its name and list all the services.



192 Chapter 24. JOnAS Services



@ redhat Chapter 25.
JONAS and the Connector Architecture

This chapter is provided for advanced JOnAS users concerned with EAI (Enterprise Application In-
tegration).

25.1. Introducing the Connector Architecture

The Java Connector Architecture (Connectors) defines a way for enterprise applications (based on
EJB, Servlet, JSP, or J2EE clients) to communicate with existing external Enterprise Information
Systems (EIS) through an application server such as JOnAS. This requires the use of a third-party
software component called a Resource Adapter (RA) for each type of EIS. A Resource Adapter is an
architecture component, comparable to a software driver, that connects the EIS, the application server,
and the enterprise application. The RA is generally made available by an EIS vendor.

The RA provides an interface (the Common Client Interface or CCI) to the enterprise application
(EJBs) for accessing the EIS. The RA also provides standard interfaces for plugging into the applica-
tion server, so that the EIS and application server can collaborate to keep all system-level mechanisms
transparent from the application components. The application performs “business logic” operations
on the EIS data using the RA client API (CCI), while transactions, connections (including pooling),
and security on the EIS is managed by JOnAS through the RA (system contract).

J2EE Application

Container-Component contract

OnAS
CCI Client interface

JOnAS
J2EE
Server

Resource
Adapters

System contract

Connections
Transactions
Security

EiS-specific interface

LL[ EIS \\}

Figure 25-1. Connector Architecture

25.2. Defining the JOnAS Connector Deployment Descriptor

Using a Connector Resource Adapter with JOnAS involves the following steps:

1. The bean provider must specify the connection factory requirements by declaring a resource
manager connection factory reference in its EJB deployment descriptor. For example:



194

Chapter 25. JOnAS and the Connector Architecture

<resource-ref>

<res-ref-name>eis/MyEIS</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The mapping of the connection factory to the actual INDI name (here adapt_1) is done in the
JOnAS-specific deployment descriptor with the following element:
<jonas-resource>

<res-ref-name>eis/MyEIS</res-ref-name>
<jndi-name>adapt_1</jndi-name>

</jonas-resource>

This means that the bean programmer will have access to a connection factory instance using
the JNDI interface via the java:comp/env/eis/MyEIS name:

// obtain the initial JNDI naming context

Context inictx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)
inictx.lookup ("java:comp/env/eis/MyEIS<");

The bean programmer can then get a connection by calling the method getConnection on the
connection factory.
javax.resource.cci.Connection cx = cxf.getConnection();

The returned connection instance represents an application-level handle to a physical connection
for accessing the underlying EIS.

After finishing with the connection, you must close it using the close method on the
Connection interface:
cx.close();

The resource adapters must be deployed before being used by the application. Deploying
the resource adapter requires that you build a JOnAS-specific resource adapter
configuration file that will be included in the resource adapter.

This jonas-ra XML file is used to configure the resource adapter in the operational environment
and reflects the values of all properties declared in the deployment descriptor for the resource
adapter, plus additional JOnAS-specific configuration properties. JOnAS provides a deployment
tool (Section 6.7 RAConfig) that is capable of building this XML file from an RA deployment
descriptor inside an RAR file. For example:

RAConfig -j adap_1 ra

These properties may be specific for each resource adapter and its underlying EIS. They are used
to configure the resource adapter via its managedConnectionFactory class. It is mandatory
that this class provide a getter and setter method for each of its supported properties (as it is
required in the Connector Architecture specification). Refer to Chapter 41 Configuring Resource
Adapters for a complete description of the JOnAS-specific configuration file, jonas-ra.xml.

. The JOnAS resource service must be configured and started at JOnAS launching time:

In the jonas.properties file:
a. Insert the name resource in the jonas. services property.
b. Use one of the following methods to deploy an RAR file:

« The name of the resource adapter files (the .rar suffix is optional)
must be added in the list of Resource Adapter to be used in the
jonas.service.resource.resources RAR file. If the . rar suffix is not used on
the property, it will be used when trying to allocate the specified Resource Adapter.
jonas.service.resource.resources MyEIS.rar, MyEIS1



Chapter 25. JOnAS and the Connector Architecture 195

« Place the RAR file in the autoload directory of $JONAS_BASE; default
value iS $JONAS_BASE/rars/autoload. Note that it may be different if
jonas.service.resource.autoloadin jonas.properties is configured differently.

+ Add the RAR:

jonas admin -a xxx.rar



196 Chapter 25. JOnAS and the Connector Architecture



é) redhat Chapter 26.
JMS User’s Guide

This chapter is provided for advanced JOnAS users concerned with JMS (Java Message Service).

As required by the J2EE v1.4 specification, application components (servlets and enterprise beans)
can use JMS for Java messaging. Furthermore, applications can use Message-driven Beans (MDBs)
for asynchronous EJB method invocation, as specified by the EJB 2.1 specification.

JOnAS supports the JMS 1.1 specification, which offers a domain-independent approach to pro-
gramming the client application. Priot to JMS 1.1, client programming for point-to-point and pub-
lish/subscribe domains was achieved using similar, but separate, class hierarchies. With JMS 1.1, it is
now possible to engage queues and topics in the same transaction.

Enterprise Bean providers can use JMS connection factory resources via resource references, and
JMS destination resources (JMS queues and JMS topics) via resource environment references. Thus,
they are able to provide JMS code, inside an EJB method or web component method, for sending or
synchronously receiving messages to/from a JMS queue or topic.

The EJB container and the Web container can allow for JMS operations within a global transaction,
which may include other resources such as databases.

JOnAS integrates a third-party JMS implementation, JORAM (http://joram.objectweb.org/), which is
the default JMS service, and for which a J2EE1.4 compliant Resource Adapter archive file is also
provided. Other JMS providers, such as SwiftMQ (http://www.swiftmq.com/) and WebSphere MQ
(http://www-3.ibm.com/software/integration/mqfamily/), can easily be integrated.

A JMS provider can be integrated within JOnAS by deploying a corresponding resource adapter.
This is the preferred method as the JMS service will eventually become deprecated in future JOnAS
releases. Also, this method allows deployment of 2.1 MDBs (which is impossible with the JMS ser-
vice).

To perform JMS operations, application components use JMS-administered objects such as connec-
tion factories and destinations. Refer to Section 26.4 JMS Administration for an explanation of how
to create those objects.

26.1. JMS is Pre-installed and Configured

To use JMS with JOnAS, no additional installation or configuration operations are required. JOnAS
contains:

+ The Java[TM] Message Service API 1.1, currently integrated with the JOnAS distribution,

+ A JMS implementation. Currently, the OpenSource JORAM (http://joram.objectweb.org), is inte-
grated with the JOnAS distribution; thus no installation is necessary.

Additionally, another JMS implementation, the SwiftMQ product, has been used with JOnAS.

26.2. Writing JMS Operations Within an Application Component

To send (or synchronously receive) JMS messages, an application component requires access to JMS-
administered objects (that is, to connection factories for creating connections to JMS resources, and
to destination objects (queue or topic), which are the JMS entities used as destinations within JMS
sending operations). Both are made available through JNDI by the JMS provider administration facil-

1ty.



198 Chapter 26. JMS User’s Guide

You can find a sample JMS application in $JONAS_ROOT/examples/src/jms/; it is described in Sec-
tion 26.6 A JMS EJB Example.

26.2.1. Accessing the Connection Factory

The EJB specification introduces the concept of resource manager connection factory references.
This concept also appears in the J2EE v1.4 specification. It is used to create connections to a resource
manager. To date, three types of resource manager connection factories are considered:

+ DataSource objects (javax.sql.DataSource) represent connection factories for JDBC connec-
tion objects.

+ JMS connection factories. The connection factories for JMS connection objects are:
+ Jjavax.jms.ConnectionFactory
+« Jjavax.jms.QueueConnectionFactory

*« Jjavax.jms.TopicConnectionFactory.

+ Java Mail connection factories. The connection factories for Java Mail connection objects are
javax.mail.SessionOr javax.mail.internet.MimePartDataSource.

The connection factories of interest here are the second type, which should be used to get JMS con-
nection factories.

Note that starting with JMS 1.1, it is recommended that you wuse only the
javax.jms.ConnectionFactory (rather than javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory). However, the JMS 1.1 implementation is fully
backwards-compatible and existing applications will work as-is.

The standard deployment descriptor should contain the following resource-ref element:

<resource-ref>
<res-ref-name>Jjms/conFact</res-ref-name>
<res-type>javax.jms.ConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

This means that the programmer will have access to a ConnectionFactory object using the JNDI
name java:comp/env/jms/conFact. The source code for obtaining the factory object is the fol-
lowing:

ConnectionFactory gcf = (ConnectionFactory)
ctx.lookup ("java:comp/env/jms/conFact");

The mapping to the actual JNDI name of the connection factory (as assigned by the JMS provider
administration tool), CF in the example, is defined in the JOnAS-specific deployment descriptor with
the following element:

< jonas-resource>
<res-ref-name>jms/conFact</res-ref-name>
<jndi-name>CF</Jjndi-name>
</Jjonas-resource>



Chapter 26. JMS User’s Guide 199

26.2.2. Accessing the Destination Object

Accessing a JMS destination within the code of an application component requires using a Resource
Environment Reference, which is represented in the standard deployment descriptor as follows:

<resource-env-ref>
<resource-env-ref-name>jms/stockQueue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue<resource-env-ref-type>
</resource-env-ref>

The application component’s source code should contain:
Queue g = (Queue) ctx.lookup ("java:comp/env/jms/stockQueue");

The mapping to the actual JNDI name (for example, "myQueue") is defined in the JOnAS-specific
deployment descriptor in the following way:

< Jjonas-resource-env>
<resource-env-ref-name>jms/stockQueue</resource-env-ref-name>
< jndi-name>myQueue< jndi-name>

</Jjonas-resource-env>

26.2.3. Writing JMS Operations
A typical method performing a message-sending JMS operation looks like the following:

void sendMyMessage () {

ConnectionFactory cf = (ConnectionFactory)
ctx.lookup ("java:comp/env/jms/conFact");
Queue queue = (Queue) ctx.lookup ("java:comp/env/jms/stockQueue");
Connection conn = cf.createConnection();
Session sess = conn.createSession(true, Session.AUTO_ACKNOWLEDGE) ;
MessageProducer mp = sess.createProducer ((Destination)queue);
ObjectMessage msg = sess.createObjectMessage () ;
msg.setObject ("Hello");
sender.send (msg) ;
sess.close();
conn.close () ;

}

It is also possible for an application component to synchronously receive a message. Here is an EJB
method that performs synchronous message reception on a queue:

public String recMsg() {
ConnectionFactory cf = (ConnectionFactory)
ctx.lookup ("java:comp/env/jms/conFact");
Queue queue = (Queue) ctx.lookup ("java:comp/env/jms/stockQueue");
Connection conn = cf.createConnection();
Session sess = conn.createSession(true, Session.AUTO_ACKNOWLEDGE) ;
MessageConsumer mc = sess.createConsumer ( (Destination)queue);
conn.start ();
ObjectMessage msg = (ObjectMessage) mc.receive();
String msgtxt = (String) msg.getObject ();
sess.close();
conn.close () ;
return msgtxt;



200 Chapter 26. JMS User’s Guide

A method that performs JMS operations should always contain the session create and close statements,
as follows:

public void doSomethingWithJdMS (...) {

session = connection.createSession(...);
// JMS operations
session.close();

}

The contained JMS operations will be a part of the transaction, if there is one, when the JOnAS server
executes the method.

Note

Never send and receive a particular message in the same transaction because JMS sending opera-
tions are performed only at commit time.

The previous examples illustrate point-to-point messaging. However, application components can also
be developed using the publish/subscribe JMS API (that is, using the Topic instead of the Queue
destination type). This offers the capability of broadcasting a message to several message consumers
at the same time.

The following example illustrates a typical method for publishing a message on a JMS topic and
demonstrates how interfaces have been simplified since JMS 1.1.

public void sendMsg(java.lang.String s) {
ConnectionFactory cf = (ConnectionFactory)
ictx.lookup ("Jjava:comp/env/jms/conFactSender") ;
Topic topic = (Topic) ictx.lookup("java:comp/env/jms/topiclistener");
Connection conn = cf.createConnection();
Session session = conn.createSession(true, Session.AUTO_ACKNOWLEDGE) ;
MessageConsumer mc = session.createConsumer ((Destination)topic);
ObjectMessage message = session.createObjectMessage();
message.setObject (s);
mc.send (message) ;
session.close();
conn.close () ;

26.2.4. Transactions and JMS Sessions Within an Application Component

JMS session creation within an application component will result in different behaviors, depending
on whether the session is created at execution time within or outside a transaction. In fact, the parame-
ters of the createSession (boolean transacted, int acknowledgeMode) method are never
taken into account.

« If the session creation occurs outside a transaction, the parameters is considered as being
transacted = false and acknowlfor example, Mode = AUTO_ACKNOWLEDGE. This
means that each operation of the session is immediately executed.

« If the session creation occurs inside a transaction, the parameters have no meaning, the session may
be considered as transacted, and the commit and rollback operations are handled by the JOnAS
server at the level of the associated XA resource.



Chapter 26. JMS User’s Guide 201

26.2.5. Authentication with JMS

If your JMS implementation performs user authentication, the following methods can be used on
connection factories:

+ The createConnection (String userName, String password) method can be used on
ConnectionFactory

+ The createQueueConnection (String userName, String password) method can be used
on QueueConnectionFactory

+ The createTopicConnection (String userName, String password) method can be used
on TopicConnectionFactory

Note

Starting with JMS 1.1, it is recommended that you use only the javax.jms.ConnectionFactory
(rather than javax.jms.QueueConnectionFactory OF javax. jms.TopicConnectionFactory).
However, the JMS 1.1 implementation is fully backwards-compatible and existing applications will
work as-is.

26.3. Some Programming Rules and Restrictions When Using JMS
within EJB

This section presents some programming restrictions and rules for using JMS operations within entity
components.

26.3.1. Connection Management

Depending on the JMS implementation and the application, it may be desirable to keep the JMS
connections open for the life of the bean instance or for the duration of the method call. These two
programming modes are illustrated in the following example (this example illustrates a stateful Ses-
sion Bean):

public class EjbCompBean implements SessionBean {

QueueConnectionFactory gcf = null;
Queue queue = null;

public void ejbCreate() {

ictx = new InitialContext ();

gcf = (QueueConnectionFactory)
ictx.lookup ("java:comp/env/jms/conFactSender") ;
queue = (Queue) ictx.lookup ("java:comp/env/jms/queuel");
}
public void doSomethingWithJdMS (...) {
Connection conn = gcf.createConnection();
Session session = conn.createSession(...);

// JMS operations
session.close();
conn.close () ;



202 Chapter 26. JMS User’s Guide

}

To keep the connection open during the life of a bean instance, the programming style shown in the
following example is preferred, since it avoids many connection opening and closing operations:

public class EjbCompBean implements SessionBean {
ConnectionFactory gcf = null;

Queue queue = null;

Connection conn = null;

public void ejbCreate() {

ictx = new InitialContext();

cf = (ConnectionFactory)
ictx.lookup ("java:comp/env/jms/conFactSender") ;
queue = (Queue) ictx.lookup ("queuel");
conn = cf.createConnection();
}
public void doSomethingWithdMS (...) {
Session session = conn.createSession(...);

// JMS operations
session.close();

}

public void ejbRemove () {
conn.close () ;

}

}

Be aware that maintaining JMS objects in the bean state is not always possible, depending on the type
of bean.

« For a stateless Session Bean, the bean state is not maintained across method calls. Therefore, the
JMS objects should always be initialized and defined in each method that performs JMS operations.

+ For an Entity Bean, an instance may be passivated, and only the persistent part of the bean state
is maintained. Therefore, it is recommended that the JMS objects be initialized and defined in
each method performing JMS operations. If these objects are defined in the bean state, they can be
initialized in the e jbActivate method (if the connection is created in the e jbAct ivate method,
be sure to close it in the e jbPassivate method).

+ For a stateful Session Bean (as shown in the previous example), JMS objects can be defined in the
bean state. Stateful Session Bean instances can be passivated (not in the current version of JOnAS,
but it is scheduled for the summer of 2004). Since connection factories and destinations are serial-
izable objects, they can be initialized only in ejbCreate. However, be aware that a connection must
be closed in e jbPassivate (with the state variable set to null) and recreated in e jbActivate.

Note that, due to a known problem with the Sun JDK 1.3 on Linux, the close of the connection can
block. The problem is fixed with JDK 1.4.



Chapter 26. JMS User’s Guide 203

26.3.2. Starting Transactions after JMS Connection or Session Creation

Currently, it is not possible to start a bean-managed transaction after the creation of a JMS session
and have the JMS operations involved in the transaction. In the following code example, the JMS
operations will not occur within the ut transaction:

public class EjbCompBean implements SessionBean {

public void doSomethingWithJdMS (...) {

Connection conn = cf.createConnection();
Session session = conn.createSession(...);
ut = ejbContext.getUserTransaction();
ut.begin();

// JMS operations
ut.commit () ;
session.close();
conn.close () ;

}

To have the session operations involved in the transaction, the session creation and close should be
inside the transaction boundaries, and the connection creation and close operations can either be both
outside the transaction boundaries or both inside the transaction boundaries, as follows:

public class EjbCompBean implements SessionBean {

public void doSomethingWithJdMS (...) {

Connection conn = gcf.createConnection();

ut = ejbContext.getUserTransaction();

ut.begin () ;

Session session = conn.createSession(...);
// JMS operations

session.close();

ut.commit () ;

conn.close () ;

or

public class EjbCompBean implements SessionBean {

public void doSomethingWithJdMS (...) {

ut = ejbContext.getUserTransaction();

ut.begin () ;

Connection conn = cf.createConnection();

Session session = conn.createSession(...);
// JMS operations

session.close();

conn.close();

ut.commit () ;



204 Chapter 26. JMS User’s Guide

}

Programming EJB components with bean-managed transactions can result in complex code. Using
container-managed transactions can help avoid problems such as those previously described.

26.4. JMS Administration

Applications using messaging require some JMS-administered objects: connection factories and des-
tinations. These objects are created via the proprietary administration interface (not standardized) of
the JMS provider. For simple cases, it is possible to have either the jms service, or the JMS resource
adapter, performing administration operations during startup.

As provided, the default JMS service and JORAM adapter configurations automatically create six
connection factories and two destination objects.

The six connection factories automatically created are described in the following table:

JNDI name IMS type Usage

CF ConnectionFactory To be used by an application component to create
a connection.

QCF QueueConnectionFactory To be used by an application component to create
a QueueConnection.

TCF TopicConnectionFactory To be used by an application component to create
a TopicConnection.

JCF ConnectionFactory To be used by any other Java component (for
instance a client) to create a connection.

JQCF QueueConnectionFactory To be used by any other Java component (for
instance a client) to create a QueueConnection.

JTCF TopicConnectionFactory To be used by any other Java component (for
instance a client) to create a TopicConnection.

The CF, QCF and TCF connection factories are managed connection factories. The application com-
ponents should use only managed connection factories to allow JOnAS to manage the JMS resources
created via these connection factories (the JMS sessions). In contrast, JCF, JQCF and JTCF are non-
managed connection factories. They are used by Java components implementing a JMS client behav-
ior, but running outside the application server.

The two destinations automatically created are described in the following table:

JNDI name IMS type Usage

sampleQueue Queue Can be equally used by an EJB component or a
Java component.

sampleTopic Topic Can be equally used by an EJB component or a
Java component.




Chapter 26. JMS User’s Guide 205

26.4.1. JMS Service Administration
To use the JMS service in the default configuration, all that is necessary is requiring the use of the
JMS service in the jonas.properties file:

jonas.services security, jtm, dbm, jms, ejb

JOnAS will not create additional connection factories when using the default configuration. How-
ever, JOnAS can create requested destination objects at server launching time, if specified in the
jonas.properties file. To do this, specify the INDI names of the Topic and Queue destination ob-
jects to be created in a jonas.service. jms.topicsand jonas.service. jms.queues property
respectively, as follows:

// JOnAS server creates 2 topic destinations (tl,t2)
jonas.service.jms.topics tl,t2

// JOnAS server creates 1 queue destination (myQueue)
jonas.service. jms.queuesmyQueue

It is recommended that programmers use resource references and resource environment references to
access the connection factories and destination objects created by JOnAS, as presented in Section 26.2
Writing JMS Operations Within an Application Component.

26.4.2. JMS Resource Adapter Configuration

Starting with JOnAS release 4.1, it is recommended that you deploy a JMS resource adapter instead of
using the jms service. How to do this is explained in Section 3.7 Configuring JMS Resource Adapters.

26.5. Running an EJB Performing JMS Operations

All that is necessary to have an Enterprise Bean perform JMS operations is:
jonas start

The Message-Oriented Middleware (the JMS provider implementation) is automatically started (or
at least accessed) and the JMS-administered objects that will be used by the Enterprise Beans are
automatically created and registered in JNDI.

Then, the EJB can be deployed as usual with:

jonas admin -a XX.jar

26.5.1. Accessing the Message-Oriented Middleware as a Service

If the JOnAS property jonas.services contains the jms service, the JOnAS JMS service will be
launched and will eventually try to launch a JMS implementation (for example, the JORAM MOM or
the SwiftMQ MOM) through the JMS service in the JOnAS properties file.

For launching the MOM, consider the following possibilities:

+ Launching the MOM automatically in the JOnAS JVM.

This is done using the default values for the configuration options (that is, keeping the JOnAS
property jonas.service.jms.collocated value true in the jonas.properties file (see
the jonas.properties file provided in $JONAS_ROOT/conf directory)).
jonas.service.jms.collocated true



206 Chapter 26. JMS User’s Guide

In this case, the MOM will be launched automatically at server launching time (command jonas
start).

Note

To use the JMS resources from a distant host, the hostname property value in the default
a3servers.xml configuration file must be changed from localhost to the actual host name. See
case 4 (Launching the MOM on another port number) for details on the JORAM configuration.

Launching the MOM in a separate JVM on the same host.
To launch JORAM MOM with its default options, use the command: JmsServer
For other MOM:s, use the proprietary command.

In this case, the JOnAS property jonas.service. jms.collocated mustbe setto false in the
jonas.properties file:
jonas.service.jms.collocated false

Launching the MOM on another host.

The MOM can be launched on a separate host. In this case, the JOnAS server must be notified
that the MOM is running on another host via the JOnAS property jonas.service.jms.url
in the jonas.properties file. For JORAM, its value should be the JORAM URL
joram://host:port where host is the host name, and port the default JORAM port number,
which is: 16010

jonas.service.jms.collocated false

jonas.service.jms.url joram://host2:16010

For SwiftMQ, the value of the URL is similar to: smgp://host:4001/timeout=10000
Launching the MOM on another port number (for JORAM)

Changing the default JORAM port number requires a JORAM-specific configuration operation
(modifying the a3servers.xml configuration file located in the directory where JORAM is ex-
plicitly launched). A default a3servers.xml file is provided in the $JONAS_ROOT/conf direc-
tory; this a3servers.xml file specifies that the MOM runs on the localhost using the JORAM
default port number.

To launch the MOM on another port number, change the args attribute of the service
fr.dyade.aaa.mom.ConnectionFactory element in the a3servers.xml file and update the
jonas.service. jms.url property in the jonas.properties file.

The default a3servers.xml file is located in $JONAS_ROOT/conf. To change the location of
this file, the system property -Dfr.dyade.aaa.agent .A3CONF_DIR="your directory for
a3.xml" must be passed.

To learn how to change other MOM configuration settings (distribution, multi-servers, and so on),
refer to the JORAM documentation on http://joram.objectweb.org.

Note

The MOM may be directly launched by the proprietary command. The command for JORAM is:
java -DTransaction=NullTransaction fr.dyade.aaa.agent.AgentServer 0 ./sO

This command corresponds to the default options used by the Jmsserver command.

The JMS messages are not persistent when launching the MOM with this command. If persistent
messages are required, the -DTransaction=NullTransaction option should be replaced with
the -DTransaction=ATransaction option. Refer to the JORAM documentation for more details
about this command.



Chapter 26. JMS User’s Guide 207

26.5.2. Accessing the Message-Oriented Middleware as a J2EE1.4 Adapter
With JOnAS, a JMS server can be accessed through a resource adapter that can be deployed.

To deploy such a resource adapter, put the corresponding archive file (*.rar) in JOnAS’s
rars/autoload directory, declare it at the end of the jonas.properties file, or deploy it
manually through the jonasAdmin tool.

Configuring and deploying such adapters is explained in Section 3.7 Configuring JMS Resource
Adapters.

26.6. A JMS EJB Example

This example shows an EJB application that combines an Enterprise Bean sending a JMS message
and an Enterprise Bean writing a Database (an Entity Bean) within the same global transaction. It is
composed of the following elements:

+ A Session Bean, EjbComp, with a method for sending a message to a JMS topic.

+ An Entity Bean, Account (the one used in the sample eb with container-managed persistence),
which writes its data into a relational database table and is intended to represent a sent message
(that is, each time the EjbComp bean sends a message, an Entity Bean instance will be created).

+ An EJB client, EjbCompClient, which calls the sendMsg method of the EjbComp bean and creates
an Account entity bean, both within the same transaction. For a transaction commit, the JMS mes-
sage is actually sent and the record corresponding to the entity bean in the database is created. For
a rollback, the message is not sent and nothing is created in the database.

+ A pure JMS client MsgReceptor, outside the JOnAS server, the role of which is to receive the
messages sent by the Enterprise Bean on the topic.

You can find the sample JMS application in $JONAS_ROOT/examples/src/jms/; it is described in
Section 26.6 A JMS EJB Example.

26.6.1. The Session Bean Performing JMS Operations

The bean should contain code for initializing the references to JMS administered objects that it will
use. To avoid repeating this code in each method performing JMS operations, it can be introduced in
the e jbCreate method.

public class EjbCompBean implements SessionBean {

ConnectionFactory cf = null;
Topic topic = null;

public void ejbCreate() {

ictx = new InitialContext();

cf = (ConnectionFactory)
ictx.lookup ("java:comp/env/jms/conFactSender") ;
topic = (Topic) ictx.lookup ("java:comp/env/jms/topiclistener");

}
}

All code that is not necessary for understanding the JMS logic (such as exception management) has
been removed from the above example.



208 Chapter 26. JMS User’s Guide

The JMS-administered objects ConnectionFactory and Topic have been made available to the
bean by a resource reference in the first example, and by a resource environment reference in the
second example.

The standard deployment descriptor should contain the following element:

<resource-ref>
<res-ref-name>jms/conFactSender</res-ref-name>
<res-type>javax.jms.ConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

<resource-env-ref>
<resource-env-ref-name>jms/topiclistener</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
</resource-env-ref>

The JOnAS-specific deployment descriptor should contain the following element:

< jonas-resource>
<res-ref-name>jms/conFactSender</res-ref-name>
<jndi-name>TCF</jndi-name>

</Jjonas-resource>

< jonas-resource-env>
<resource-env-ref-name>jms/topiclistener</resource-env-ref-name>
<jndi-name>sampleTopic</jndi-name>

</Jjonas-resource-env>

Note that the EjbComp SessionBean will use the administered objects automatically created by
JONAS in the default JMS configuration.

Because the administered objects are now accessible, it is possible to perform JMS operations within
a method. The following occurs in the sendMsg method:

public class EjbCompBean implements SessionBean {

public void sendMsg(java.lang.String s) {
// create Connection, Session and MessageProducer
Connection conn = null;
Session session = null;
MessageProducer mp = null;

try f
conn = cf.createConnection();
session = conn.createSession (true, Session.AUTO_ACKNOWLEDGE) ;
mp = session.createProducer ((Destination)topic);

}
catch (Exception e) {e.printStackTrace();}

// send the message to the topic

try f
ObjectMessage message;
message = session.createObjectMessage () ;

message.setObject (s) ;
mp.send (message) ;
session.close();
conn.close();

} catch (Exception e) {
e.printStackTrace();

}



Chapter 26. JMS User’s Guide 209

}

This method sends a message containing its String argument.

26.6.2. The Entity Bean

The example uses the simple Entity Bean Account for writing data into a database. Refer to the sample
eb, which is described in Chapter 2 Getting Started with JOnAS and in the JOnAS Tutorial.

26.6.3. The Client Application

The client application calls the sendMsg method of the EjbComp bean and creates an AccountImpl
Entity Bean, both within the same transaction.

public class EjbCompClient {

public static void main(String[] arg) {

utx = (UserTransaction)
initialContext.lookup ("javax.transaction.UserTransaction");

homel = (EjbCompHome) initialContext.lookup ("EjbCompHome") ;
home2 = (AccountHome) initialContext.lookup ("AccountImplHome");

EjbComp admsBean = homel.create();
Account aDataBean = null;

utx.begin();

admsBean.sendMsg ("Hello commit"); // sending a JMS message
aDataBean = home2.create (222, "JMS Sample OK", 0);
utx.commit ();

utx.begin();

admsBean.sendMsg ("Hello rollback"); // sending a JMS message
aDataBean = home2.create (223, "JMS Sample KO", 0);
utx.rollback();

}
}

The result of this client execution will be that:

+ The "Hello commit" message will be sent and the [222, ’JMS Sample OK’, 0] record will
be created in the database (corresponding to the Entity Bean 109 creation).

+ The "Hello rollback" message will never be sent and the [223, ’JMS Sample KO’, 0]
record will not be created in the database (since the Entity Bean 110 creation will be canceled).

26.6.4. A Pure JMS Client for Receiving Messages

In this example, the messages sent by the EJB component are received by a simple JMS client that is
running outside the JOnAS server, but listening for messages sent on the JMS topic "sampleTopic." It
uses the ConnectionFactory automatically created by JOnAS named "JCF".

public class MsgReceptor {

static Context ictx = null;



210 Chapter 26. JMS User’s Guide

static ConnectionFactory cf = null;
static Topic topic = null;

public static void main(String[] arg) {

ictx = new InitialContext();
cf = (ConnectionFactory) ictx.lookup ("JCEF");
topic = (Topic) ictx.lookup ("sampleTopic");

Connection conn = cf.createConnection();
Session session =

conn.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
MessageConsumer mc = session.createConsumer ((Destination)topic);

MyListenerSimple listener = new MyListenerSimple () ;
mc.setMessagelistener (listener);
conn.start ();

System.in.read(); // waiting for messages

session.close();
conn.close () ;

}
}

public MyListenerSimple implements javax.jms.MessagelListener ({
MyListenerSimple () {}

public void onMessage (javax.jms.Message msg) {
try |
if (msg==null)
System.out.println ("Message: message null ");
else {
if (msg instanceof ObjectMessage) {
String m = (String) ((ObjectMessage)msg) .getObject ();
System.out.println ("JMS client: received message ======> " + m);
} else if (msg instanceof TextMessage) {
String m = ((TextMessage)msqg) .getText ();
System.out.println ("JMS client: received message ======> " + m);
}
}catch (Exception exc) {
System.out.println ("Exception caught :" + exc);
exc.printStackTrace () ;



5) redhat

Chapter 27.
Ant EJB Tasks: Using EJB-JAR

The < jonas> nested element uses the GenIC tool to build JOnAS-specific stubs and skeletons and
constructs a JAR file that can be deployed to the JOnAS Application Server. The build process always
determines if the EJB stubs/skeletons and the EJB-JAR file are up-to-date and performs the minimum
amount of work required.

A naming convention for the EJB descriptors is most commonly used to specify the name for the com-
pleted JAR file. For example, if the EJB descriptor e jb/Account-ejb-jar.xml is located in the
descriptor directory, the < jonas> element searches for a JOnAS-specific EJB descriptor file named
ejb/Account-jonas-ejb-jar.xml, and a JAR file named e jb/Account . jar will be written in
the destination directory. The < jonas> element can also use the JOnAS naming convention. Using
the same example, the EJB descriptor can also be named e jb/Account . xml (no base name termi-
nator here) in the descriptor directory. The <jonas> element will then search for a JOnAS-specific
EJB descriptor file called e jb/jonas-Account.xml. This convention does not strictly follow the
EJB-JAR naming convention recommendation, but it is supported for backward compatibility with
previous version of JOnAS.

Note that when the EJB descriptors are added to the JAR file, they are automatically renamed
META-INF/ejb-jar.xml and META-INF/jonas—ejb-jar.xml.

Furthermore, this naming behavior can be modified by specifying attributes in the e jbjar task (for
example, basejarname, basenameterminator, and flatdestdir) as well as the iplanet ele-
ment (for example, suffix).

27.1. ejbjar Parameters

Attribute Description Required

destdir The base directory into which the generated JAR files will be | Yes
written. Each JAR file is written in directories that correspond
to their location within the descriptordir namespace.

jonasroot The root directory for JOnAS. Yes

jonasbase The base directory for JOnAS. If omitted, it defaults to No
jonasroot.

classpath The classpath used when generating EJB stubs and skeletons. | No
If omitted, the classpath specified in the “ejbjar” parent task
will be used. If specified, the classpath elements will be
prefixed to the classpath specified in the parent “ejbjar” task. A
nested “classpath” elements can also be used. Note that the
needed JOnAS JAR files are automatically added to the
classpath.

keepgenerated true if the intermediate Java source files generated by GenIC | No
must not be deleted. If omitted, it defaults to false.

nocompil true if the generated source files must not be compiled via the | No
Java and RMI compilers. If omitted, it defaults to false.

novalidation true if the XML deployment descriptors must be parsed No
without validation. If omitted, it defaults to false.




212 Chapter 27. Ant EJB Tasks: Using EJB-JAR

Attribute Description Required
javac Java compiler to use. If omitted, it defaults to the value of No
build.compiler property.
javacopts Options to pass to the Java compiler. No
protocols Comma-separated list of protocols (chosen within jrmp, iiop, | No
cmi) for which stubs should be generated. Default is jrmp.
rmicopts Options to pass to the rmi compiler. No
verbose Indicates whether or not to use -verbose switch. If omitted, it No

defaults to false.

additionalargs Add additional args to GenIC. No

keep generic true if the generic JAR file used as input to GenIC must be No
retained. If omitted, it defaults to false.

suffix String value appended to the JAR filename when creating each | No
JAR. If omitted, it defaults to . jar.

nogenic If this attribute is set to t rue, JOnAS’s GenIC will not be run | No
on the EJB JAR. Use this if you prefer to run GenIC at
deployment time. If omitted, it defaults to false.

mappernames List of JORM mapper names, separated by commas, used for | No
CMP2.0 to indicate for which mappers the container classes
should be generated.

jvmopts Additional args to pass to the GenIC JVM. No

As noted above, the jonas element supports additional <classpath> nested elements.

Note

To avoid java.lang.OutOfMemoryError, you can use the element jvmopts to change the default
memory usage.

27.1.1. ejbjar Example

This example shows e jbjar being used to generate deployment jars using a JOnAS EJB container.
This example requires the naming standard to be used for the deployment descriptors. Using this
format creates a EJB JAR file for each variation of *-jar.xml that is located in the deployment
descriptor directory.

<ejbjar srcdir="${build.classes}"
descriptordir="${descriptor.dir}">
<Jjonas destdir="${deploymentjars.dir}"
jonasroot="${jonas.root}" orb="RMI"/>
<include name="**/* . xml"/>
<exclude name="**/jonas-*.xml"/>
<support dir="${build.classes}">
<include name="**/*_ class"/>
< /support>
</ejbjar>



Chapter 27. Ant EJB Tasks: Using EJB-JAR 213

This example shows ejbjar being used to generate a single deployment JAR using a JOnAS EJB
container. This example does require the deployment descriptors to use the naming standard. This
creates only one EJB-JAR file: TheEJBJar. jar

<ejbjar srcdir="${build.classes}"
descriptordir="${descriptor.dir}"
basejarname="TheEJBJar">
<Jjonas destdir="${deploymentjars.dir}"
jonasroot="${jonas.root}"
suffix=".jar" orb="${genic.org}"/>
<include name="**/ejb-jar.xml"/>
<exclude name="**/jonas-ejb-jar.xml"/>
</ejbjar>



214 Chapter 27. Ant EJB Tasks: Using EJB-JAR



@ redhat

Chapter 28.
Login Modules in a Java Client

This chapter describes how to configure an environment to use login modules with Java clients, and
provides an example of this.

28.1. Configuring an Environment to Use Login Modules with Java
Clients

The login modules for use by clients are defined in the $JONAS_ROOT/conf/jaas.config file. For
example:

jaasclient {
// Login Module to use for the example jaasclient.

//First, use a LoginModule for the authentication

// Use the resource memrlm_ 1

org.objectweb. jonas.security.auth.spi.JResourceloginModule required
resourceName="memrlm_1"

i

// Use the login module to propagate security to the JOnAS server
// globalCtx is set to true in order to set the security context
// for all the threads of the client container instead of only

// on the current thread.

// Useful with multithread applications (like Swing Clients)
org.objectweb. jonas.security.auth.spi.ClientLoginModule required
globalCtx="true"

i

i

This file is used when a Java client is launched with jclient, as a result of the following property
being set by jclient:

-Djava.security.auth.login.config==$JONAS_ROOT/conf/jaas.config

For more information about the JAAS authentication, refer to the JAAS authentication tutorial (see
http://java.sun.com/j2se/1.4.1/docs/guide/security/jaas/tutorials/General AcnOnly.html).

28.2. Example of a Client

+ First, declare the CallbackHandler to use. It can be a simple command line prompt, a dialog, or
even a login/password to use.

Example of CallbackHandler that can be used within JOnAS:
CallbackHandler handlerl = new LoginCallbackHandler();
CallbackHandler handler2 = new DialogCallbackHandler();
CallbackHandler handler3 =

new NoInputCallbackHandler ("jonas_user", "jonas_password");

+ Next, call the LoginContext method with the previously defined CallbackHandler and the entry to
use from the JONAS_ROOT/conf/jaas.config file.

This example uses the dialog callbackhandler.



216 Chapter 28. Login Modules in a Java Client

LoginContext loginContext = new LoginContext ("jaasclient", handler2);

+ Finally, call the login method on the LoginContext instance.
loginContext.login () ;

If there are no exceptions, the authentication is successful.

If the supplied password is incorrect, authentication can fail.



) rednat Chapter 29.
Web Services with JOnAS

Web Services can be used within EJBs or servlets/JSPs. This integration conforms to the JSR 921(Web
Service for J2EE v1.1) specification (see http://www.jcp.org/en/jst/details?id=921).

Note

While JSR 921 is in a maintenance review phase, we provide a link to the 109(v1.0) specification
(http://www.jcp.org/en/jsr/details?id=109).

29.1. Web Services

29.1.1. Some Definitions

WSDL (Web Service Description Language v1.1)

An XML-based format for specifying the interface to a Web Service. The WSDL details
the service’s available methods and parameter types, as well as the actual SOAP endpoint
for the service. In essence, WSDL is the "user’s manual" for the Web Service. (See
http://www.w3.org/TR/wsdl.)

SOAP (Simple Object Access Protocol v1.2)

An XML-based protocol for sending request and responses to and from Web Services. It con-
sists of three parts: an envelope defining message contents and processing, encoding rules for
application-defined data types, and a convention for representing remote procedure calls and
responses. (See http://www.w3.org/tr/SOAP.)

JAX-RPC (Java API for XML RPC v1.1)

The Java API for XML based RPC. RPC (Remote Procedure Call) enables a client to execute
procedures on other systems. The RPC mechanism is often used in a distributed client/server
model in which the server defines a service as a collection of procedures that may be called by
remote clients. In the context of Web Services, RPCs are represented by the XML-based protocol
SOAP when transmitted across systems.

In addition to defining the envelope structure and encoding rules, the SOAP specification defines
a convention for representing remote procedure calls and responses. An XML-based RPC server
application can define, describe and export a Web Service as an RPC-based service. WSDL
(Web Service Description Language) specifies an XML format for describing a service as a set
of endpoints operating on messages. With the JAX-RPC API, developers can implement clients
and services described by WSDL. (See http://www.jcp.org/en/jsr/detail?id=101.)

29.1.2. Overview of a Web Service

Strictly speaking, a Web Service is a well-defined, modular, encapsulated function used for loosely
coupled integration between applications’ or systems’ components. It is based on standard technolo-
gies, such as XML, SOAP, and UDDI.



218 Chapter 29. Web Services with JOnAS

Web Services are generally exposed and discovered through a standard registry service. With these
standards, Web Services consumers (whether they be users or other applications) can access a broad
range of information—personal financial data, news, weather, and enterprise documents—through
applications that reside on servers throughout the network.

Web Services use a WSDL Definition as a contract between client and server (which are called end-
points). WSDL defines the types to serialize through the network (described with XMLSchema), the
messages to send and receive (composition, parameters), the portTypes (abstract view of a Port), the
bindings (concrete description of PortType: SOAP, GET, POST, ...), the services (set of Ports), and the
Port (the port is associated with a unique endpoint URL that defines the location of the Web Service).

A Web Service for J2EE is a component with some methods exposed and accessible by HTTP (through
servlets). Web Services can be implemented as Stateless Session Beans or as JAX-RPC classes (a
simple Java class, no inheritance needed).

JOnAS

Web Container

External
WebServices /

Client

Stateless Session Bean

Figure 29-1. Web Services endpoints deployed within JOnAS (an external client code can access
the endpoint via AxisServlet)

JOnAS

Web Container

| | (Any Servlet or JSP)
External
WebService . :
Ejb Container
(Any EJBs:
EB/SB/MDB)

Figure 29-2. Web Services client deployed within JOnAS (can access external Web Services)



Chapter 29. Web Services with JOnAS 219

The servlet is used to respond to a client request and dispatch the call to the designated instance
of servant (the SSB or JAX-RPC class exposed as Web Service). It handles the deserialization of
incoming SOAP message to transform SOAP XML into a Java Object, perform the call, and serialize
the call result (or the thrown exception) into SOAP XML before send the response message to the
client.

29.2. Exposing a J2EE Component as a Web Service

There are two types of J2EE components that can be exposed as Web Services endpoints: Stateless
Session Beans and JAX-RPC classes. Web Services’ endpoints must not contain state information.

A new standard Deployment Descriptor has been created to describe Web Services endpoints. This
Descriptor is named webservices.xml and can be used in a Web Application (in WEB-INF/) or
in an EJB-JAR (in META-INF/). This Descriptor has its JOnAS-specific Deployment Descriptor
(jonas-webservices.xml is optional)

29.2.1. A JAX-RPC Endpoint

A JAX-RPC endpoint is a simple class running in the Tomcat servlet container. SOAP requests are
dispatched to an instance of this class and the response is serialized and sent back to the client.

A JAX-RPC endpoint must be in a Web Application (the WAR file must contain a
WEB-INF/webservices.xml).

29.2.2, Stateless Session Bean Endpoint

An Stateless Session Bean (SSB) is an EJB that will be exposed (all or some of its methods) as a Web
Service endpoint.

In the ejb-jar.xml standard descriptor, a Session Bean, exposed as a Web Service, must now use
the new service-endpoint tag. Here the developer defines the fully qualified interface name of the Web
Service. Notice that no other interfaces (home, remote, localnome, local) are needed with a Session
Bean exposed as Web Service.

Typically, an SSB must be in an EJB-JAR, and a META-INF/webservices.xml is located in the
EJB-JAR file.

29.2.3. Usage

In this Descriptor, the developer describes the components that will be exposed as Web Services’
endpoints; these are called the port-components. A set of port-components defines a webservice-
description, and a webservice-description uses a WSDL Definition file for a complete description of
the Web Services’ endpoints.

Each port-component is linked to the J2EE component that will respond to the request (service-impl-
bean with a servlet-link or ejb-link child element) and to a WSDL port (wsdl-port defining the port’s
QName). A list of JAX-RPC Handlers is provided for each port-component. The optional service-
endpoint-interface defines the methods of the J2EE components that will be exposed (no inheritance
needed).

A JAX-RPC Handler is a class used to read or modify the SOAP Message before transmission or
after reception (refer to the JAX-RPC vi.1 spec. chap#12 "SOAP Message Handlers'"). The Session
Handler is a simple example that will read/write SOAP session information in the SOAP Headers.
Handlers are identified with a unique name (within the application unit), are initialized with the init-



220 Chapter 29. Web Services with JOnAS

param(s), and work on processing a list of SOAP Headers defined with soap-headers child elements.
The Handler is run as the SOAP actors defined in the list of SOAP-roles.

A webservice-description defines a set of port-components, a WSDL Definition (describing the Web
Service) and a mapping file (WSDL-2-Java bindings). The wsdl-file element and the jaxrpc-mapping-
file element must specify a path to a file contained in the module unit (that is, the WAR/JAR file).
Note that a URL cannot be set here. The specification also requires that the WSDLs be placed in a
wsdl subdirectory (that is, WEB-INF/wsdl or META-INF/wsdl); there is no such requirement for the
jaxrpc-mapping-file. All the ports defined in the WSDL must be linked to a port-component. This is
essential because the WSDL is a contract between the endpoint and a client (if the client use a port
not implemented/linked with a component, the client call will systematically fail).

As for all other Deployment Descriptors, a standard XML Schema
(http://www-124.ibm.com/developerworks/opensource/jsr109/xsd/j2ee_web_services_1_1.xsd)  is
used to constrain the XML.

29.2.4. Simple Example (expose a JAX-RPC Endpoint) of webservices.xml

<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
version="1.1">
<display-name>Simple Web Service Endpoint
DeploymentDesc</display-name>

<webservice-description>
<!-- name must be unique in an Application unit-->
<!-- Should not contains spaces !!! -->
<webservice-description—name>
SimpleWebServiceEndpoint
</webservice-description-name>

<!-- Link to the WSDL file describing the endpoint -->
<wsdl-file>WEB-INF/wsdl/warendpoint.wsdl</wsdl-file>

<!-- Link to the mapping file describing binding
between WSDL and Java —->

<Jjaxrpc-mapping-file>WEB-INF/warEndpointMapping.xml
</jaxrpc-mapping-file>

<!-- The list of endpoints —-->
<port-component>

< !-- Unique name of the port-component —-->
<!-- Must not contains spaces !!! -->

<port-component-name>WebappPortCompl</port-component-name>

<!-- The QName of the WSDL Port the
J2EE port-component is linked to -->

<!-- Must Refers to a port in
associated WSDL document —-->

<wsdl-port xmlns:ns="

http://wsendpoint.servlets.ws.objectweb.org ">
ns:wsendpointl

</wsdl-port>



Chapter 29. Web Services with JOnAS 221

<!-- The endpoint interface defining methods exposed -->
<!-- for the endpoint -—>
<service-endpoint-interface>
org.objectweb.ws.servlets.wsendpoint.WSEndpointSei
</service-endpoint-interface>

<!-- Link to the J2EE component (servlet/EJB) -——>

<!-- implementing methods of the SEI -—>
<service-impl-bean>

<!-- name of the servlet defining the JAX-RPC endpoint -—>
<!-- can be ejb-link if SSB is used (only in EjbJar !) -—>

<servlet-1link>WSEndpoint</servlet-1link>
</service-impl-bean>

<!-- The list of optional JAX-RPC Handlers -->
<handler>
<handler-name>MyHandler</handler—-name>
<handler-class>org.objectweb.ws.handlers.SimpleHandler</handler-class>
<!-- A list of init-param for Handler configuration -->
<init-param>
<param-name>paraml</param-name>
<param-value>valuel</param-value>
</init-param>
<init-param>
<param-name>param2</param-name>
<param-value>value2</param-value>
</init-param>
</handler>
< /port-component>
</webservice-description>
</webservices>

29.2.5. The Optional jonas-webservices.xml

The jonas-webservices.xml file is collocated with the webservices.xml.Itis an optional De-
ployment Descriptor (required only in some cases). Its role is to link a webservices.xml to the Web
Application in charge of the SOAP request dispatching. In fact, it is only needed for an EJB-JAR (the
only one that depends on another servlet to be accessible with HTTP/HTTPS) that does not use the
Default Naming Convention used to retrieve a Web Application name from the EJB-JAR name.

Convention: ejbjar—-name.jar will have an e jbjar—-name.war Web Application.

Example:

<jonas-webservices xmlns="http://www.objectweb.org/jonas/ns"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.objectweb.org/jonas/ns
http://www.objectweb.org/jonas/ns/jonas_j2ee_web_services_4_0.xsd">
<!-- the name of the webapp in the EAR -—>
<!-- (it is the same as the one in application.xml) -->
<war>dispatchingWebApp.war</war>

</jonas-webservices>

29.2.6. Changes to jonas-web.xml

JOnAS allows the developer to fully configure an application by setting the hostname, the context-
root, and the port used to access the Web Services. This is done in the jonas-web.xml file of the
dispatching Web Application.



222 Chapter 29. Web Services with JOnAS

host

Configure the hostname to use in URL (must be an available web container host).

port

Configure the port number to use in URL (must be an available HTTP/HTTPS connector port
number).

When these values are not set, JOnAS will attempt to determine the default values for host and port.

Limitations:

+ The host can be determined only when only one host is set for the web container.

+ The port can be determined only when only one connector is used by the web container.

29.3. The Web Services Client

An EJB or a servlet that wants to use Web Services (as a client) must declare a dependency on the
Web Service with a service-ref element (same principle as for all *-ref elements).

29.3.1. The service-ref Element

The service-ref element declares a reference to a Web Service used by a J2EE component in the web,
EJB, and client Deployment Descriptor.

The component uses a logical name called a service-ref-name to look up the service instance.
Thus, any component that performs a lookup on a Web Service must declare a dependency (the
service-ref element) in the standard deployment descriptor (web.xml application-client.xml,
or ejb-jar.xml).

Example of service-ref:

<service-ref>
<!-- (Optional) A Web Services description that can be used
in administration tool. -->
<description>Sample WebService Client</description>

<!-- (Optional) The WebService reference name
(used in Administration tools) —-->
<display-name>WebService Client 1</display-name>

<!-- (Optional) An icon for this WebService. -->
<icon> <!-- ... -=> </icon>

<!-- The logical name for the reference that is used
in the client source code. It is recommended, but not required,
that the name begin with ’services/’ -->

<service-ref-name>services/myService</service-ref-name>

<!-- Defines the class name of the JAX-RPC Service interface
that the client depends on. In most cases, the value
will be javax.xml.rpc.Service, but a generated specific Service
Interface class may be specified (requires WSDL knowledge and
so on for the wsdl-file element). —-->
<service-interface>javax.xml.rpc.Service</service-interface>

<!-- (Optional) Contains the location (relative to the root of
the module) of the Web Service WSDL description.



Chapter 29. Web Services with JOnAS 223

-needs to be in the wsdl directory
—-required if generated interface and sei are declared. —->
<wsdl-file>WEB-INF/wsdl/stockQuote.wsdl</wsdl-file>

<!-- (Optional) A file specifying the correlation of the WSDL
definition to the interfaces (Service Endpoint Interface,
Service Interface).
-required if generated interface and sei (Service Endpoint
Interface) are declared.-->
< jaxrpc-mapping-file>WEB-INF/myMapping.xml</jaxrpc-mapping-file>

<!-- (Optional) Declares the specific WSDL service element
that is being referred to. It is not specified if no wsdl-file
is declared or if WSDL contains only 1 service element.
A service-gname is composed by a namespaceURI and a localpart.
You must define it if more than 1 service is declared
in the WSDL. —-->

<service-gname>
<namespaceURI>http://beans.ws.objectweb.org</namespaceURI>
<localpart>MyWSDLService</localpart>

</service-gname>

<!-- Declares a client dependency on the container to resolving
a Service Endpoint Interface to a WSDL port. It optionally
associates the Service Endpoint Interface with a particular
port—-component. —->

<port-component-ref>
<service-endpoint-interface>

org.objectweb.ws.beans.ssbendpoint.MyService
</service-endpoint-interface>
<!-- Define a link to a port component declared in another unit
of the application —-->
<port-component-1link>
ejb_module. jar#PortComponentName

< /port-component-link>

< /port-component-ref>

<!--A list of Handler to use for this service-ref -->
<handler>
<!-- Must be unique within the module. -->

<handler-name>MyHandler</handler—-name>
<handler-class>org.objectweb.ws.handlers.myHandler</handler-class>

<!-- A list of init-param (couple name/value) for Handler
initialization -->
<init-param>

<param-name>param_l</param-name>
<param-value>value_l</param-value>
</init-param>

<!-— A list of QName specifying the SOAP Headers the handler
will work on.
-namespace and locapart values must be found inside the WSDL. -->

<soap-header>
<namespaceURI>http://ws.objectweb.org</namespaceURI>
<localpart>MyWSDLHeader</localpart>

</soap-header>



224 Chapter 29. Web Services with JOnAS

<!-- A list of SOAP actor definition that the Handler will play
as a role. A soap-role is a namespace URI. -->
<soap-role>http://actor.soap.objectweb.org</soap-role>

<!-- A list of port-name element defines the WSDL port-name
that a handler should be associated with. If no port-name is
specified, the handler is assumed to be associated with all ports

of the service-ref. -->
<port-name>myWSDLPort</port-name>
</handler>

</service-ref>

29.3.2. The jonas-service-ref Element

A jonas-service-ref must be specified for each service-ref declared in the standard Deployment De-
scriptor. The jonas-service-ref adds JOnAS-specific (and Web Service engine-specific) information to
service-ref elements.

Example of jonas-service-ref:

< jonas-service-ref>
<!-- Define the service-ref contained in the component
deployment descriptor (web.xml, ejb-jar.xml, or
application-client.xml) used as a key to associate a
service-ref to its corresponding jonas-service-ref-->
<service-ref-name>services/myService</service-ref-name>

<!-- Define the physical name of the resource. —-->
<Jjndi-name>webservice_1</jndi-name>

<!-- A list of init-param used for specific configuration of
the service -->
< Jjonas-init-param>
<param-name>param</param-name>
<param-value>name</param-value>
</jonas-init-param>
</jonas-service-ref>

29.4. WsGen

WsGen is a new JOnAS tool that works in the same way as GenlIC. It takes an archive file (EJB-JAR,
WAR, JAR client, or EAR) and generates all the necessary Web Services files:

+ Creates vendor-specific Web Services deployment files for the server side and, when needed, the
client side (Axis will use its own WSDD format).

+ Creates a Web Application for each EJB-JAR exposing Web Service.
+ Generates and compiles client-side artifacts (Services and Port Bindings implementation classes).

For example, to provide an EJB-exposing method as a Web Service, a developer creates a
webservices.xml file packaged in EJB-JAR’s META-INF directory. WsGen automatically creates
a configured Web Application (using an Axis servlet) and wraps it (ejbjar + webapp) in an EAR file.

With a JaxRpe class, WsGen adds a servlet (an Axis servlet) inside the existing web deployment
descriptor and generates an Axis-specific configuration file.



Chapter 29. Web Services with JOnAS 225

When using service-ref (from EJB-JARs, Web Applications, or clients), WsGen automatically gener-
ates a stub from WSDL (if a generated service interface name is provided).

29.4.1. Usage
WsGen is used usually from an ant build file. Simply add this taskdef under the EJB-JAR taskdef:

<taskdef name="wsgen" classname="org.objectweb. jonas.ant.WsGenTask"
classpath="${jonas.root}/lib/common/ow_jonas_ant.jar" />
<wsgen srcdir="${temp.dir}"
destdir="${dist.dir}"
verbose="false"
debug="false">
<include name="webapps/wswarsample.war"/>
</wsgen>

See the $JONAS_ROOT/examples/webservices samples for complete build scripts.

Note that the EJB-JAR/Web Application/client archive must include WSDL, jax-rpc-mappings used
in service-ref, or webservices.xml. When these files are used from a service-ref, they are added
into the generic EJB-JAR with the EJB-JAR Ant task of JOnAS; you must ensure that they have been
placed inside the srcdir given to the EJB-JAR task (otherwise, the EJB-JAR task cannot find them and
will produce an error).

This task is a directory-based task and, as such, forms an implicit fileset (see
http://ant.apache.org/manual/index.html. This defines which files, relative to the srcdir, will be
processed. The WsGen task supports all the attributes of fileset to refine the set of files to be included
in the implicit fileset.

Attribute Description Required
sredir Directory where file archive (EJB-JAR, WAR, Client, EAR) can | Yes
be found.
destdir Directory where generated files will be placed No
verbose Verbose mode (Defaults to false) No
debug Debug mode (Defaults to false) No
javacopts List of options given to the Java compiler No
jonasroot Directory where JOnAS is installed No
jonasbase Directory where JOnAS configuration is stored No

Table 29-1. wsgen Task Support

Wsgen is also usable from the command line with WsGen script (available on *nix and Windows).

29.5. Limitations

+ The jaxrpx-mapping-file is used only to retrieve XML namespace to Java package information
mapping. All other information is not used at this time (Axis limitation).

« service-endpoint-interface in port-component and port-component-ref is read, but not used.



226 Chapter 29. Web Services with JOnAS



VII. How-to Documents

This section contains information for a variety of JOnAS users.

Table of Contents

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

JOnAS Versions Migration Guide

How to Install a jUDDI Server on JOnAS

Clustering with JOnAS
Distributed Message Beans in JOnAS 4.1

How to use Axis in JOnAS
Using WebSphere MQ JMS

Web Service Interoperability between JOnAS and BEA WebLogic

RMI-ITIOP Interoperability between JOnAS and BEA WebLogic
Interoperability between JOnAS and CORBA

How to Migrate the New World Cruises Application to JOnAS
Configuring JDBC Resource Adapters

Configuring Resource Adapters

229
231
235
245
249
253
257
263
265
269
275
281






E) rednat Chapter 30.
JONAS Versions Migration Guide

This section describes how to migrate from JOnAS 3.3.x to JOnAS 4.1.

30.1. JONAS 3.3.x to Red Hat Application Server 1.0

Applications developed for JOnAS 3.3.x do not require changes; however, they should be rede-
ployed (GenlC). See Chapter 15 Application Deployment and Installation Guide for details. The main
changes occur within the JOnAS configuration files; you should port your customizations to the new
JOnAS 4.1 configuration files, especially for the ones mentioned below.

30.1.1. Configuration Changes

The two most visible configuration changes are the following:

+ HTTP port numbers have moved from the 8000 range to the 9000 range. For example, the JOnAS
server index page with default configuration on a given host is now http://localhost:9000/index.jsp

+ The three RMI communication protocols, jrmp, jeremie, and iiop can now be used simultane-
ously; the incompatibility between Jeremie and rmi/iiop and the "ant installiiop” step has been
suppressed. Because of this, the "ant install" phase (in JONAS_ROOT) is no longer required.

Configuration files with significant changes:

+ conf/server.xml is a customized Tomcat 5 configuration file, while in JOnAS 3.3.x it was a
Tomcat 4 configuration file. Also, package names of JOnAS-related security files have changed;
for example org.objectweb.jonas.security.realm.web.catalina50.JACC replaces
org.objectweb. jonas.security.realm.JRealmCatalina4l. The JAAS classname realm
is org.objectweb. jonas.security.realm.web.catalina50.JAAS.

+ conf/jetty5.xml  replaces conf/jetty.xml. In the web-jetty.xml files
(in war), the package name of the Realm class has changed. For example,
org.objectweb. jonas.security.realm.web. jetty50.Standard replaces
org.objectweb. jonas.security.realm.JRealmJetty42 class. The JAAS classname
realm is org.objectweb. jonas.security.realm.web.jetty50.JAAS.

+ conf/jonas.properties: has many changes
« Some properties for web services
« Some package names have changed (such as for the Web JOnAS service)
« The XML validation is activated by default for EJBs
« New properties for the service “db” (by default it uses HSQL as the Java database).

+ conf/joram-admin.cfg is a new configuration file used for specifying the creation of JMS-
administered objects when using the JORAM connector (J2EE CA 1.5 JMS resource adapter). The
default file corresponds to the default-administered objects created when using the JOnAS JMS
service.



230 Chapter 30. JOnAS Versions Migration Guide

30.1.2. Running EJB 2.1 Message-driven Beans

The use of EJB 2.1 Message-driven beans (MDBs) requires changing the JOnAS configuration. While
for EJB 2.0 MDBs the JOnAS JMS service was required, EJB 2.1 MDBs can only be used through
a JMS Connector (J2EE CA 1.5 resource adapter). Currently the JOnAS JMS service and the JMS
connector cannot work at the same time, therefore it is necessary to remove the "jms" service from the
list of JOnAS services (jonas.services in jonas.properties) and to add the JORAM connector in the list
of resource adapters to be deployed by the JOnAS resource service (jonas.service.resource.resources
in jonas.properties). Note that it is currently not possible to simultaneously run EJB 2.0 MDBs and
EJB 2.1 MDBs in the same server. It is anticipated that a JMS connector able to handle both EJB
2.0 and EJB 2.1 MDBs will be available soon, at which time the JOnAS JMS service will become
deprecated. For more details, refer to Section 3.5.9 Configuring the JMS Service and Section 3.7
Configuring JMS Resource Adapters.

30.1.3. Deploying Resource Adapters

The Section 6.7 RAConfigResource Adapter configuration tool did not generate the DOCTYPE in-
formation in JOnAS 3.3.x versions. If you are using resource adapters that were customized through
RAConfig, it is recommended that you run the tool again on these Resource Adapters.



s) redhat
Chapter 31.

How to Install a jUDDI Server on JOnAS

31.1. UDDI Server

A UDDI server is basically a web services registry.

Providers of web services put technical information (such as the WSDL definition used to access the
web service, its description, ...) inside these registries. Web services users can browse these registries
to choose a web service that fits their needs.

31.2. What is juDDI?

JjUDDI (pronounced “Judy”) is a Java-based implementation of the “Universal Description, Discovery,
and Integration” (UDDI) specification (v2.0) for Web services. It is implemented as a pure Java web
application and can be deployed with a minimum amount of work inside JOnAS.

For more information, see http://ws.apache.org/juddi.

31.3. Where Can | Find the Latest Version?

JOnAS already includes jUDDI v0.8 as a preconfigured Web application. However, you can find the
latest jUDDI version at http://ws.apache.org/juddi.

31.4. Installation Steps

jUDDI needs a minimum of configuration steps in order to be successfuly deployed inside JOnAS.

Note

The first step can be ignored if you use the JOnAS-provided juddi.war.

31.4.1. Create the juddi Web Application

31.4.1.1. Compilation

1. Go to the directory where the jUDDI sources are located (JUDDI_HOME).

2. Customize the JUDDI_HOME/conf/juddi.properties configuration file.
# JUDDI Proxy Properties (used by RegistryProxy)
juddi.proxy.adminURL = http://localhost:9000/juddi/admin
juddi.proxy.inquiryURL = http://localhost:9000/juddi/inquiry
juddi.proxy.publishURL = http://localhost:9000/juddi/publish
juddi.proxy.transportClass = org.apache.juddi.proxy.AxisTransport
juddi.proxy.securityProvider = com.sun.net.ssl.internal.ssl.Provider
juddi.proxy.protocolHandler = com.sun.net.ssl.internal.www.protocol



232 Chapter 31. How to Install a jUDDI Server on JOnAS

# JjUDDI HTTP Proxy Properties
juddi.httpProxySet = true
juddi.httpProxyHost = proxy.viens.net
juddi.httpProxyPort = 8000
juddi.httpProxyUserName = sviens
juddi.httpProxyPassword = password

3.Launch the compilation with Ant WAR. This produces a juddi.war inside the
JUDDI_HOME/build/ directory.

31.4.1.2. Customization

JOnAS provides a lightweight juddi.war file from which all unnecessary libraries have been re-
moved.

The original juddi.war (created from JUDDI_HOME) has a lot of libraries inside its WEB-INF/1ib
that are already provided by JOnAS. These files, listed below, can safely be removed:

axis.jar

commons-discovery.jar

commons-logging.jar

jaxrpc.jar
+ saaj.jar
+ wsdl4j.jar

By default, jUDDI includes a jonas-web.xml descriptor (in JUDDI_HOME/conf). This descriptor
specifies the jndi name of the DataSource used in jUDDI; its default value is jdbc/juddiDB. This
value will be used in the <datasource>.properties of JOnAS.

31.4.2. Create the Database

31.4.2.1. Retrieve the SQL scripts for your database

jUDDI comes with SQL files for many databases (MySQL, DB2, HSQL, Sybase, PostgreSQL, Oracle,
Total XML, JDataStore). The SQL scripts are different for each version of jUDDI:

+ MySQL
+ 0.8 : juddi_mysql.sql
« 0.9rcl : create_database.sql insert_publishers.sql

- DB2

+ 0.8 :juddi_db2.sql

« 0.9rcl : create_database.sql insert_publishers.sql
+ HSQL

« 0.8 :juddi_hsql.sql

« 0.9rcl : create_database.sql insert_publishers.sql

+ Sybase



Chapter 31. How to Install a jUDDI Server on JOnAS 233

+ 0.8 :juddi_ase.sql

+ 0.9rcl : create_database.sql insert_publishers.sql

+ PostgreSQL
+ 0.8 : juddi_postgresql.sql

« 0.9rcl : create_database.sql insert_publishers.sql

+ Oracle
+ 0.8 : juddi_oracle.sql

+ 0.9rcl : create_database.sql insert_publishers.sql

+ Total XML
+ 0.8 : juddi_totalxml.sql

+ 0.9rcl : create_database.sql insert_publishers.sql

+ JDataStore
+ 0.8 :juddi_jds.sql

+ 0.9rcl : create_database.sql insert_publishers.sql

31.4.2.2. Set Up the Database

For the 0.8 jUDDI release, the given SQL script must be executed. Then, a publisher (the user who
has the rights to modify the UDDI server) must be added manually. This is currently the only way to
add a publisher for jUDDI.

For latest release (0.9rcl), execute the given scripts (table creation, tmodels insertions, and publishers
insertions).

31.4.3. Configure JOnAS Datasource

As jUDDI uses a DataSource to connect to the database, JOnAS must be configured to create this
DataSource:

Create a file (named ws-juddi-datasource.properties for example) and fill it in according to
the database you use.

FHAFHAFHHF S FEAF A FHSFHE MySQL DataSource configuration example
# datasource.name is the jndi-name set in jonas-web.xml

datasource.name jdbc/juddiDB

# datasource.url is the URL where the database can be accessed
datasource.url jdbc:mysqgl://localhost/db_juddi

# datasource.classname is the JDBC Driver classname
datasource.classname com.mysqgl.Driver

# Set the DB username and password here

datasource.username XXX

datasource.password XXX

# available values:

# rdb,rdb.postgres,rdb.oracle,rdb.oracle8, rdb.mckoi, rdb.mysqgl
datasource.mapper rdb.mysql

# Add the datasource properties filename

# (without the suffix .properties)

# in (SJONAS_BASE|$JONAS_ROOT) /conf/jonas.properties



234 Chapter 31. How to Install a jUDDI Server on JOnAS

jonas.service.dbm.datasources <datasource-filename>

31.4.4. Deploy and Test jUDDI
Deploy jUDDI on JOnAS with a command similar to the following:

$ jonas admin -a ~/juddi/juddi.war
You should see the following output:

11:53:57,984 : RegistryServlet.init : JUDDI Starting:
Initializing resources and subsystems.

11:53:58,282 : AbsJWebContainerServiceImpl.registerWar : War

/home/sauthieg/sandboxes/ws-projects/ws—juddi/build/juddi.war
available at the context /juddi.

Open your web browser and go to the URL http://localhost:9000/juddi/happyjuddi.jsp to confirm that
the juddi setup is successful.

If the URL opens, you can access your UDDI server through any UDDIv2.0 compliant browser.

» inquiryURL = http://localhost:9000/juddi/inquiry
+ publishURL = http://localhost:9000/juddi/publish

31.5. Links

+ UDDI web site ( http://uddi.org/)

+ jUDDI web site ( http://ws.apache.org/juddi)

+ UDDI4]J Java implementation ( http://www.uddi4j.org)

» IBM UDDI Test Registry ( https://uddi.ibm.com/testregistry/registry.html)
+ Microsoft UDDI Test Registry ( http://uddi.microsoft.com/)

+ XMethods web Site ( http://www.xmethods.net/)

+ UDDI Browser ( http://www.uddibrowser.org/)



@ redhat Chapter 32.
Clustering with JOnAS

This chapter describes how to configure Apache, Tomcat, and JOnAS to install a cluster.

This configuration uses the Apache/Tomcat plug-in mod_ jk to provide load balancing and high avail-
ability at the JSP/Servlet level. The mod_jk plug-in enables the use of the Apache HTTP server in
front of one or more Tomcat JSP/Servlet engines, and provides the capability of forwarding some of
the HTTP requests (typically those concerning dynamic pages—such as JSP and Servlet requests) to
Tomcat instances.

The configuration uses the In-Memory-Session-Replication technique based on the group communi-
cation protocol JavaGroups to provide failover at the Servlet/JSP level.

For load balancing at the EJB level, a clustered JNDI called CMI is used.

32.1. Cluster Architecture

The architecture with all the clustering functionality available in JOnAS is Apache as the front-end
HTTP server, JOnAS/Tomcat as J2EE Container, and a shared database.

At the servlet/JSP level, the mod_ jk plug-in provides load balancing/high availability, and the tomcat-
replication module provides failover.

At the EJB level, the clustered JNDI CMI provides load balancing/high availability.
The database is shared by the JOnAS servers.

The architecture presented in this document is shown in the following illustration:

JOnAS
Web
Container

— {Tomcat)
|

Apache ;
P Session CMI ) DB
Replication

—

JOnAS )
Web
Container
(Tomcat)
L |

Mod_jk \ (==

Figure 32-1. Architecture



236 Chapter 32. Clustering with JOnAS

This architecture provides:

+ Load Balancing: Requests can be dispatched over a set of servers to distribute the load. This im-
proves the “scalability” by allowing more requests to be processed concurrently.

+ High Availability (HA): having several servers able to fulfill a request makes it possible to ensure
that, if a server dies, the request can be sent to an available server (thus the load-balancing algo-
rithm ensures that the server to which the request will be sent is available). Therefore, “Service
Availability” is achieved.

+ Failover at Servlet/JSP Level: This feature ensures that, if one JSP/Servlet server goes down, an-
other server is able to transparently take over (that is, the request will be switched to another server
without service disruption). This means that it will not be necessary to start over, thus achieving
continuity.

However, failover at EJB level is not available. This means that no State Replication is provided. The
mechanism to provide failover at EJB level is under development and will be available in a coming
version of JOnAS.

32.2. Load Balancing at the Web Level with mod_jk

This section describes how to configure Apache, Tomcat, and JOnAS to run the architecture shown in
the following illustration:

Figure 32-2. Load balancing at web level with mod_jk



Chapter 32. Clustering with JOnAS 237

32.2.1. Configuring the JK Module (mod_jk)

32.2.1.1. JK module principles
mod_jk is a plug-in that handles the communication between Apache and Tomcat.

mod_jk uses the concept of a worker. A worker is a Tomcat instance that is running to perform Servlet
requests coming from the web server. Each worker is identified to the web server by the host on which
it is located, the port where it listens, and the communication protocol used to exchange messages. In
this configuration there is one worker for each Tomcat instance and one worker that will handle the
load balancing (this is a specific worker with no host and no port number). All workers are defined in
the worker.properties file.

Note:

The JK Module can also be used for site partitioning.

32.2.1.2. Configure Apache

e httpd.conf

Create a file named tomcat_jk.conf, which must be included in
$APACHE_HOME/conf/httpd.conf. This file loads the module mod_jk:

LoadModule jk_module libexec/mod_jk.so

AddModule mod_jk.c

Next, configure mod_jk:

# Location of the worker file
JkWorkersFile "/etc/httpd/conf/jk/workers.properties"
# Location of the log file

JkLogFile "/etc/httpd/jk/logs/mod_jk.log"
# Log level : debug, info, error or emerg
JkLogLevel emerg

# Assign specific URL to Tomcat workers
JkMount /admin loadbalancer

JkMount /admin/* loadbalancer

JkMount /examples loadbalancer

JkMount /examples/* loadbalancer

+ worker.properties

This file should contain the list of workers first:
worker.list=a_ comma-separated_list_of_worker_names

then the properties of each worker:
worker.worker name.property;=property_value

The following is an example of a worker.properties file:
# List the workers name
worker.list=workerl,worker2, loadbalancer

worker.workerl.port=8009
worker.workerl.host=serverl
worker.workerl.type=ajpl3

# Load balance factor



238

worker.

worker.
worker.
worker.
worker.

worker.
worker.

Chapter 32. Clustering with JOnAS

workerl.lbfactor=1

worker2.port=8009
worker2.host=server?2
worker2.type=ajpl3
worker2.lbfactor=1

loadbalancer.type=1b
loadbalancer.balanced_workers=workerl, worker2

32.2.1.3. Configure Tomcat

To configure Tomcat, perform the following configuration steps for each Tomcat server:

1. Configure Tomcat for the connector AJP13. In the file conf/server.xml of the JOnAS instal-
lation directory, add (if not already there):
<!-- Define an AJP 1.3 Connector on port 8009 -->
<Connector className="org.apache.ajp.tomcat4.Ajpl3Connector"
port="8009" minProcessors="5" maxProcessors="75"
acceptCount="10" debug="20"/>

2. Define the jvmRoute.

In the file conf/server.xml of the JOnAS installation directory, add a unique route to the
Catalina engine. Replace the line:
<Engine name="Standalone" defaultHost="localhost" debug="0">

with:

<Engine jvmRoute="workerl" name="Standalone" defaultHost="localhost"
debug="0">

Note

The jvmRoute name should be the same as the name of the associated worker defined in
worker.properties. This will ensure the Session affinity.

32.2.2. Configuring JOnAS

In the JOnAS-specific deployment descriptor, add the tag shared for the Entity Beans involved and
set it to true (line 5 in the following example). When this flag is set to true, multiple instances of the
same Entity Bean in different JOnAS servers can access a common database concurrently.

The following is an example of a deployment descriptor with the flag shared:

<Jjonas-ejb-jar>
<Jjonas—entity>
<ejb-name>Id_1</ejb-name>
<jndi-name>clusterId_1</jndi-name>

<shared>true</shared>

< jdbc-mapping>
<Jjndi-name>jdbc_1</jndi-name>



Chapter 32. Clustering with JOnAS 239

<jdbc-table-name>clusterIdentityEC</jdbc-table-name>
<cmp-field-jdbc-mapping>
<field-name>name</field-name>
<Jjdbc-field-name>c_name</jdbc-field-name>
</cmp-field-jdbc-mapping>
<cmp-field-jdbc-mapping>
<field-name>number</field-name>
< jdbc-field-name>c_number</Jjdbc-field-name>
</cmp-field-jdbc-mapping>
<finder-method-jdbc-mapping>
< jonas-method>
<method-name>findByNumber</method-name>
</jonas-method>
< Jjdbc-where-clause>where c_number = ?</jdbc-where-clause>
</finder-method-jdbc-mapping>
<finder-method-jdbc-mapping>
< jonas-method>
<method-name>findAll</method-name>
</jonas-method>
< jdbc-where-clause></Jjdbc-where-clause>
</finder-method-jdbc-mapping>
< /jdbc-mapping>
</Jjonas-entity>
</jonas-ejb-jar>

32.2.3. Running a Web Application

The web application is now ready to run:

1. Start the jonas servers:
service jonas start

2. Restart Apache:
/usr/local/apache2/bin/apachectl restart

3. Use a browser to access the welcome page, usually index.html.

32.3. Session Replication at the Web Level

This section shows you how to configure Apache, Tomcat, and JOnAS to run the following architec-
ture:



240 Chapter 32. Clustering with JOnAS

WVebl |Ejb

Webl |Ejb

Figure 32-3. Session Replication

The term session replication is used when the current service state is being replicated across multiple
application instances. Session replication occurs when the information stored in an HttpSession is
replicated from, in this example, one Servlet engine instance to another. This could be data such as
items contained in a shopping cart or information being entered on an insurance application. Anything
being stored in the session must be replicated for the service to failover without a disruption.

The solution chosen for achieving Session replication is called in-memory session-replication. It uses
a group communication protocol written entirely in Java, called JavaGroups. JavaGroups is a com-
munication protocol based on the concept of virtual synchrony and probabilistic broadcasting.

The following describes the steps for achieving Session replication with JOnAS.

+ mod_jk is used to illustrate the Session Replication. Therefore, first perform the configuration steps
presented in the section Section 32.2 Load Balancing at the Web Level with mod_jk.

+ On the JOnAS servers, open the JONAS_BASE/conf/server.xml file and configure the
<context> as described:

<Context path="/replication-example" docBase="replication-example"
debug="99" reloadable="true" crossContext="true"
className="org.objectweb. jonas.web.catalina4l.JOnASStandardContext">
<Logger className="org.apache.catalina.logger.FileLogger"
prefix="localhost_replication_log." suffix=".txt" timestamp="true"/>
<Valve className="org.apache.catalina.session.ReplicationValve"
filter=".*\.gif; .*\.jpg;.*\.Jjpeg;.*\.js" debug="0"/>
<Manager
className="org.apache.catalina.session.InMemoryReplicationManager"
debug="10"
printToScreen="true"
saveOnRestart="false"
maxActiveSessions="-1"
minIdleSwap="-1"



Chapter 32. Clustering with JOnAS 241

maxIdleSwap="-1"
maxIdleBackup="-1"
pathname="null"
printSessionInfo="true"
checkInterval="10"
expireSessionsOnShutdown="false"
serviceclass="org.apache.catalina.cluster.mcast.McastService"
mcastAddr="237.0.0.1"
mcastPort="45566"
mcastFrequency="500"
mcastDropTime="5000"
tcplListenAddress="auto"
tcpListenPort="4001"
tcpSelectorTimeout="100"
tcpThreadCount="2"
useDirtyFlag="true">
</Manager>
< /Context>

Note:

The multicast address and port must be identically configured for all JOnAS/Tomcat instances.

32.3.1. Running your Web Application

The web application is now ready to run in the cluster:

1. Start the JOnAS servers:
service jonas start

2. Restart Apache: /usr/local/apache2/bin/apachectl restart

3. Use a browser to access the welcome page, usually index.html

32.4. Load Balancing at the EJB Level

This section describes how to configure JOnAS to run the following architecture:



242 Chapter 32. Clustering with JOnAS

Figure 32-4. Load Balancing

32.4.1. CMI Principles

CMI is a new ORB used by JOnAS to provide clustering for load balancing and high availability.
Several instances of JOnAS can be started together in a cluster to share their EJBs. It is possible
to start the same EJB on each JOnAS, or to distribute their load. A URL referencing several JOnAS
instances can be provided to the clients. At lookup time, a client randomly chooses one of the available
servers to request the required bean. Each JOnAS instance has the knowledge (through JavaGroups) of
the distribution of the beans in the cluster. An answer to a lookup is a special clustered stub, containing
stubs to each instance known in the cluster. Each method call on the home of the bean can be issued
by the stub to a new instance, to balance the load on the cluster. The default algorithm used for load
distribution is currently a weighted round-robin.

32.4.2. CMI Configuration

+ Inthe build.properties of the application, set the protocol name to cmi before compilation:
protocols.names=cmi

+ Inthe file carol.properties of the directory $JONAS_BASE/conf), set the protocol to cmi:
carol.protocols=cmi

+ In the file carol.properties, configure the multicast address, the group name, the round-robin
weighted factor, etc. For example:
# java.naming.provider.url property
carol.cmi.url=cmi://localhost:2002



Chapter 32. Clustering with JOnAS 243

# Multicast address used by the registries in the cluster
carol.cmi.multicast.address=224.0.0.35:35467

# Groupname for JavaGroups
carol.cmi.multicast.groupname=G1l

# Factor used for this server in weighted round robin algorithms
carol.cmi.rr.factor=100

+ For the client, specify the list of registries available in the carol.properties file:
carol.cmi.url=cmi://serverl:portl[,server2:port2...]

N otes:

The multicast address and group name must be the same for all JOnAS servers in the cluster.

If Tomcat Replication associated to cmi is used, the multicast addresses of the two configurations
must be different.

32.5. Preview of a Coming Version

A solution that enables failover at EJB level is currently under development. This signifies state repli-
cation for stateful Session Beans and Entity Beans.

This will enable the following architecture:

Web Ejb

Apache|mod_jk

Web Ejb

Figure 32-5. Technology Preview

32.6. Used Symbols




244

Chapter 32. Clustering with JOnAS

A node (computer) that
hosts one or more
SErvers.

A web container.

An EJB container.

A JOnAS instance that
hosts a web container.

A JOnAS instance that
hosts an EJB container.

A JOnAS instance that
hosts a web container
and an EJB container.

An Apache server with
the mod_ jk module.

32.7. References

+ Working with mod_jk (http://jakarta.apache.org/tomcat/tomcat-3.3-doc/mod_jk-howto.html)

+ Tomcat Workers Howto (http:/jakarta.apache.org/tomcat/tomcat-3.3-doc/Tomcat-Workers-
HowTo.html)

+ Apache JServ Protocol version 1.3 (ajp13)

+ Apache-Tomcat Howto (http://www.johnturner.com/howto/apache-tomcat-howto.html)

+ Apache 1.3.23 + Tomcat 4.0.2 + Load Balancing (http://www.ubeans.com/tomcat/)

+ Tomcat 5 Clustering (http://jakarta.apache.org/tomcat/tomcat-5.0-doc/cluster-howto.html)



) redhat Chapter 33.
Distributed Message Beans in JOnAS 4.1

JOnAS release 4.1 dramatically simplifies the use of a distributed JORAM platform from within
JOnAS servers. Such a configuration allows, for example, a bean hosted by JOnAS instance "A"
to send messages on a JORAM queue, to which a Message-Driven Bean (MDB) hosted by JOnAS
instance "B" listens.

The reasons for this progress are:

+ The JORAM Resource Adapter allows much finer configuration than the JMS service did.
+ JORAM provides a distributed JNDI server that enables JOnAS instances to share information.

Note

Before you proceed with this chapter, you should review Section 3.7.1 JORAM Resource Adapter.

33.1. Scenario and General Architecture

The following scenario and general settings are proposed:

+ Two instances of JOnAS are run (JOnAS "A" and JOnAS "B"). JOnAS A hosts a simple bean that
provides a method for sending a message on a JORAM queue. JOnAS B hosts a Message-Driven
Bean that listens on the same JORAM queue.

« Each JOnAS instance has a dedicated, collocated JORAM server: server "s0" for JOnAS A, "s1"
for JOnAS B. Those two servers are aware of each other.

+ The queue is hosted by JORAM server sl.

+ An additional JNDI service is provided by the JORAM servers. This service is used for storing the
shared information (basically, the queue’s naming reference).

33.2. Common Configuration

The JORAM servers are part of a single JORAM platform, described by the following
a3servers.xml configuration file:

<?xml version="1.0"?2>
<config>
<domain name="D1"/>
<server id="0" name="S0" hostname="hostA">
<network domain="D1" port="16301"/>
<service
class="org.objectweb.joram.mom.proxies.ConnectionManager"
args="root root"/>
<service
class="org.objectweb. joram.mom.proxies.tcp.TcpProxyService"
args="16010"/>
<service
class="fr.dyade.aaa.jndi2.distributed.DistributeddndiServer"
args="16400 0"/>



246 Chapter 33. Distributed Message Beans in JOnAS 4.1

</server>
<server id="1" name="S1" hostname="hostB">
<network domain="D1" port="16301"/>
<service
class="org.objectweb.joram.mom.proxies.ConnectionManager"
args="root root"/>
<service
class="org.objectweb. joram.mom.proxies.tcp.TcpProxyService"
args="16010"/>
<service
class="fr.dyade.aaa.jndi2.distributed.DistributedJndiServer"
args="16400 0 1"/>

</server>
</config>

This configuration describes a platform made of two servers, "sO0" and "s1", hosted by machines
"hostA" and "hostB", listening on ports 16010, providing a distributed JNDI service (more informa-
tion on JORAM’s JNDI can be found at http://joram.objectweb.org/current/doc/joram4_0_JNDI.pdf).

Each JOnAS server must hold a copy of this file in its conf/ directory. In their respective
jonas.properties files, each must declare joram_for_jonas_ra.rar as a resource to be
deployed and each should remove jms from its list of services.

33.3. Specific Configuration

JonAs A embeds JORAM server s0. The jonas-ra.xml descriptor packaged in the
joram_for_jonas_ra.rar archive file must provide the following information:

<Jjonas-config-property>
< Jjonas-config-property-name>
HostName
</jonas-config-property-name>
<Jjonas-config-property-value>
hostA
</jonas-config-property-value>
</jonas-config-property>

The other default settings do not need to be changed.

JonAs B embedds JORAM server sl. The jonas-ra.xml descriptor packaged in the
joram_for_jonas_ra.rar archive file must provide the following properties values:

< jonas-config-property>
< jonas-config-property-name>
ServerId
</jonas-config-property-name>
< Jjonas-config-property-value>
1
</jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
< jonas-config-property-name>
ServerName
</jonas-config-property-name>
<Jjonas-config-property-value>
sl
</jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>



Chapter 33. Distributed Message Beans in JOnAS 4.1 247

< jonas-config-property-name>
HostName
</jonas-config-property-name>
<jonas-config-property-value>
hostB
</jonas-config-property-value>
</jonas-config-property>

The other default settings do not need to be changed.

The shared queue is hosted by JORAM server sl. You then need to declare it in JOnAS B’s
joram-admin.cfq file as follows:

Queue scn:comp/sharedQueue

The scn:comp/ prefix is a standard way to specify which JNDI provider should be used. In this
case, the shared queue is bound to JORAM'’s distributed JNDI server, and may be retrieved from both
JOnAS A and JOnAS B. To provide this mechanism, both JOnAS servers must provide access to a
standard jndi.properties file. For JOnAS A, the file looks as follows, and should be put in its
conf/ directory:

java.naming.factory.url.pkgs

org.objectweb. jonas.naming: fr.dyade.aaa.jndi2
scn.naming. factory.host hostA
scn.naming. factory.port 16400

For JOnAS B, the file looks as follows, and should be put in the right con£/ directory:

java.naming.factory.url.pkgs

org.objectweb. jonas.naming: fr.dyade.aaa.jndi2
scn.naming. factory.host hostB
scn.naming. factory.port 16400

33.4. The Beans

The simple bean on JOnAS A needs to connect to its local JORAM server and access the remote
queue. The following is an example of consistent resource definitions in the deployment descriptors:

Standard deployment descriptor:

<resource-ref>
<res-ref-name>jms/factory</res-ref-name>
<res-type>javax.jms.ConnectionFactory</res-type>
<res—auth>Container</res-auth>
</resource-ref>
<resource-env-ref>
<resource-env-ref-name>
jms/sharedQueue
</resource-env-ref-name>
<resource-env-ref-type>
javax.jms.Queue
</resource-env-ref-type>
</resource-env-ref>

Specific deployment descriptor:
< jonas-resource>

<res-ref-name>jms/factory</res-ref-name>
<jndi-name>CF</jndi-name>



248 Chapter 33. Distributed Message Beans in JOnAS 4.1

</Jjonas-resource>
< jonas-resource-env>
<resource-env-ref-name>
jms/sharedQueue
</resource-env-ref-name>
<jndi-name>scn:comp/sharedQueue</jndi-name>
</jonas-resource-env>

The ConnectionFactory is retrieved from the local JNDI registry of the bean. However, the Queue
is retrieved from the distributed JORAM JNDI server because its name starts with the scn:comp/
prefix. It is the same queue to which the Message-Driven Bean on JOnAS B listens. To do this, its
activation properties should be set as follows:

<activation-config>
<activation-config-property>
<activation-config-property-name>
destination
</activation-config-property-name>
<activation-config-property-value>
scn:comp/sharedQueue
</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<activation-config-property-name>
destinationType
</activation-config-property-name>
<activation-config-property-value>
javax.jms.Queue
</activation-config-property-value>
</activation-config-property>
</activation-config>



5) redhat

Chapter 34.
How to use Axis in JOnAS

This chapter describes basic Axis use within JOnAS. It assumes that you do not require any explana-
tion about Axis-specific tasks (for example, Axis deployment with wspD). Before deployment in Axis,
you must verify that the deploy .wsdd file matches the site machine configuration (the yndiURL pa-
rameter in particular):

<parameter name="jndiURL" value="rmi://localhost:1099"/>

This chapter describes two ways to make an EJB (stateless Session Bean (SB)) available as a Web
Service with JOnAS:

+ Axis runs in a unique Webapp, the SB is packaged in a separate EJB-JAR (or even EAR). The intent
of this approach is to make EJBs from different packages that are already deployed accessible
as Web Services via a single Axis Webapp deployment. The drawback is that Web Services are
centralized in one Webapp only and the only way to distinguish between them for access is by the
<service-name>>, not by the <context-root>/<service-name>. In addition, the EJB-JAR files that
contain the Web Services must be included in the Webapp.

+ The accessed EJB(s) are packaged with the Axis Webapp in an EAR archive. With this approach,
the EJB-JAR files do not have to be included in the Webapp WEB-INF/1ib directory; different
Applications that contain Web Services can be hosted, providing the capability of distinguishing
between Web Services of different applications.

34.1. Unique Axis Webapp

34.1.1. Constraints

+ The EJBs exposed as WebServices must have remote interfaces.

+ The Axis Webapp must have in its WEB-INF/1ib directory all the EJB-JAR files containing Beans
exposed as Web Services.

34.1.2. Usage

+ Deploy the EJB-JARs or EARs containing Web Services.
+ Deploy the Axis Webapp (containing the EJB-JAR files).
+ Use the AdminClient tool to deploy the Web Services (with a . wsdd file).

Example:

jclient org.apache.axis.client.AdminClient -hjonasServerHostname -p9000 deploy.wsdd



250 Chapter 34. How to use Axis in JOnAS

34.2. Embedded Axis Webapp

34.2.1. Constraints

+ The EJBs exposed as Web Services can have either local or remote interfaces.

+ The EAR must contain a Webapp including a web . xm1 with Axis servlet mapping.

34.2.2. Usage

+ Deploy the application archive (EAR):
+ Use the AdminClient tool to deploy the webservices (with a . wsdd file)

Example:

jclient org.apache.axis.client.AdminClient
-lhttp://localhost:9000/hello/servlet/AxisServlet deploy.wsdd

Be careful to use a good URL to reach the Axis Servlet.
Refer to the embedded_axis example (in the $JONAS_ROOT/examples directory).

34.3. Axis Tests

When everything is deployed and running, use the following URL to view the deployed Web Services:
http://yourserver:port/yourwebapp/servlet/AxisServlet

This page will display a link for each Web Service with the WwSDL file (automatically generated by
Axis from the Java Interfaces). Use the following URL to access your Web Service (add ?WSDL for
the associated WSDL file):

http://yourserver:port/yourwebapp/services/<Service-name>

A client class can now be run against the Web Service. Note that any language (with Web Services
capabilities) can be used for the client (C#, Java, etc.).

34.4. Axis Tools

Use jclient to deploy your Web Services (in the Axis way):

jclient org.apache.axis.client.AdminClient [OPTIONS] <WSDD-file>

34.4.1. Options

-1

<URL>: the location of the AxisServlet servlet (the default location is:
http://localhost:9000/axis/servlet/AxisServlet)



Chapter 34. How to use Axis in JOnAS 251

<port>: the port of the listening http daemon (default : 9000)

<host>: the hostname of the server running the JOnAS server (default : localhost)



252 Chapter 34. How to use Axis in JOnAS



s) redhat

Chapter 35.
Using WebSphere MQ JMS

WebSphere MQ (formerly MQSeries) is the messaging platform developed by IBM; it provides Java
and JMS interfaces. Section 3.5.9 Configuring the JMS Service has information on the JMS service.

This chapter explains how WebSphere MQ can be used as a JMS provider within a JOnAS application
server.

Refer to http://www-3.ibm.com/software/integration/mqfamily/library/manualsa/ for WebSphere MQ
documentation.

35.1. Architectural Rules

WebSphere MQ, in contrast to JORAM and SwiftMQ, cannot run collocated with JOnAS. WebSphere
MQ is an external software package that must be independently administered and configured.

Administering WebSphere MQ consists of the following steps:

» Creating and configuring resources (such as queues) through the WebSphere MQ Explorer tool.

+ Creating the corresponding JMS objects (javax.3jms.Queue, javax.jms.Topic,
javax.Jjms.QueueConnectionFactory,etc.), and binding them to a registry.

The link between JOnAS and WebSphere MQ is established through the JOnAS registry. WebSphere
MQ JMS objects are bound to the JOnAS registry. JMS lookups then return the WebSphere MQ IMS
objects, and messaging takes place through these objects.

Given the complex configuration of WebSphere MQ JMS objects, it is not possible to create these
objects from JOnAS. Therefore, during the starting phase, a JOnAS server expects WebSphere MQ
JMS objects to have already been bound to the registry. It thus becomes necessary to start an indepen-
dent registry, to which WebSphere MQ may bind its JMS objects, and which may also be used by the
starting JOnAS server. The start-up sequence looks as follows:

1. Starting a registry.
2. Creating and binding WebSphere MQ JMS objects.
3. Launching the JOnAS server.

The following architecture is recommended:

+ A JOnAS server (for example called "Registry") that provides only a registry.
+ A JOnAS server (for example called "EJB") using the registry service of server "Registry".

+ Plus, of course, a WebSphere MQ server running locally.

35.2. Setting the JONAS Environment

The suggested architecture requires two JOnAS server instances. You can do this as follows:

1. Create two base directories. For example JONAS_REGISTRY and JONAS_EJB.

2. Set the JONAS_BASE environment variable so that it points towards the JONAS_REGISTRY
directory.



254 Chapter 35. Using WebSphere MQ JMS

3. In the $JONAS_ROOT directory, type: ant create_jonasbase
4. Set the JONAS_BASE environment variable so that it points towards the JONAS_EJB directory.
5. In the $JONAS_ROOT directory, type: ant create_jonasbase

The JOnAS servers may now be configured independently.

35.2.1. Configuring the Registry Server

The "Registry" server is the JOnAS server that hosts the registry service. Its configuration files are in
JONAS_REGISTRY/conf.

In the jonas.properties files, declare only the registry and jmx services:
jonas.services registry, jmx

In the carol.properties file, declare the rmi protocol:
carol.protocols=rmi

You can also configure its port:

carol.rmi.url=jrmi://localhost:2000

35.2.2. Configuring the EJB Server

The "EJB" server is the JOnAS server that is used as the application server. Its configuration files are
in JONAS_EJB/conf. Libraries must be added in JONAS_EJB/1ib/ext.

In the jonas.properties files, set the registry service as remote:
jonas.service.registry.mode remote
In the carol.properties file, declare the rmi protocol and set the correct port:

carol.protocols=rmi
carol.rmi.url=jrmi://localhost:2000

In 1ib/ext, the following libraries must be added:

+ com.ibm.mgjms. jar, including WebSphere MQ JMS classes.
+ com.ibm.mg. jar, also a WebSphere MQ library.

35.3. Configuring WebSphere MQ
WebSphere MQ JMS administration is documented in the WebSphere MQ Using Java document.

The configuration file of the JMS administration tool must be edited so that the JOnAS registry is
used for binding the JMS objects. This file is the IMSAdmin.config file located in WebSphereMQ’s
Java/bin directory. Set the factory and provider URL as follows:

INITIAL_CONTEXT_FACTORY=
org.objectweb.rmi.libs.services.registry.jndi.JRMIInitialContextFactory
PROVIDER_URL=jrmi://localhost:2000



Chapter 35. Using WebSphere MQ JMS 255

You also need to add JOnAS’s client. jar library to WebSphere MQ’s classpath.

When starting, JOnAS expects JMS objects to have been created and bound to the registry. Those
objects are connection factories, needed for connecting to WebSphere MQ destinations and other
destinations.

JOnAS automatically tries to access the following factories:

+ An xAConnectionFactory, bound with name "wsmgXACF".

+ An xAQueueConnectionFactory, bound with name "wsmgqXAQCF".

+ An XATopicConnectionFactory, bound with name "wsmqXATCF".

+ A ConnectionFactory, bound with name "JCF".

+ A QueueConnectionFactory, bound with name "JQCF".

+ A TopicConnectionFactory, bound with name "JTCF".

If one of these objects cannot be found, JOnAS prints a message similar to this:

JmsAdminForWSMQ.start : WebSphere MQ XAConnectionFactory
could not be retrieved from JNDI

This does not prevent JOnAS from working. However, if no connection factory is available, no JIMS
operations are possible from JOnAS.
If destinations have been declared in the jonas.properties file, JOnAS also expects to find them.

For example, if the following destinations are declared:

jonas.service. jms.topics sampleTopic
jonas.service. jms.queues sampleQueue

The server expects to find the following JMS objects in the registry:

+ A Queue, bound with name "sampleQueue".

+ A Topic, bound with name "sampleTopic".

If one of the declared destinations cannot be retrieved, the following message appears and the server
stops:

JOnAS error: org.objectweb.jonas.service.ServiceException:

Cannot init/start service jms’:

org.objectweb. jonas.service.ServiceException

JMS Service Cannot create administered object: java.lang.Exception:
WebSphere MQ Queue creation impossible from JOnAS

Contrary to connection factories, the JOnAS administration tool enables you to create destinations. As
it is not possible to create WebSphere MQ JMS objects from JOnAS, this works only if the destinations
are previously created through WebSphere MQ and bound to the registry.

For example, an attempt to create a queue named "myQueue” through the JonasAdmin tool works
only if:

+ You have created a queue through the WebSphere MQ Explorer tool.

+ You have created the corresponding JMS Queue and bound it to the registry with the name
"myQueue".

To launch WebSphere MQ administration tool, enter: JMSAdmin
The following prompt appears: InitCtx>



256 Chapter 35. Using WebSphere MQ JMS

To create a QueueConnectionFactory and bind it with the name JQCF, enter:
InitCtx> DEF QCF (JQCF)

You can add more parameters (for example, to specify the queue manager).

To create a Queue that represents a WebSphere MQ queue named mywWsMOqueue and bind it with the
name sampleQueue, enter:

InitCtx> DEF Q(sampleQueue) QUEUE (myWSMQqueue)

You can view objects bound in the registry by entering:

InitCtx> DIS CTX

35.4. Starting the Application

Starting the registry server:

1. Clean the local CLASSPATH: set/export CLASSPATH=""
2. Set the JONAS_BASE variable so that it points towards JONAS_REGISTRY.
3. Start the JOnAS server: jonas start -n Registry

Administering WebSphere MQ:

1. In WebSphere MQ’s Java/bin directory, launch the JMSAdmin tool: JMSAdmin
2. Create the required JMS objects.
Starting the EJB server:

1. Clean the local CLASSPATH: set /export CLASSPATH=""
2. Set the JONAS_BASE variable so that it points towards JONAS_EJB.
3. Start the JOnAS server: jonas start -n EJB

Starting an EJB client:

1. Add in the jclient classpath the ibm.com.mq. jar and ibm.com.mgjms . jar libraries.

2. Launch the client: jclient ...

35.5. Limitations

Using WebSphere MQ as the JMS transport within JOnAS has some limitations compared to using
JORAM or SwiftMQ.

First of all, WebSphere MQ is compliant with the old 1.0.2b JMS specifications. Code written fol-
lowing the JMS 1.1 specification (such as the JMS samples provided with JOnAS) will not work with
WebSphere MQ.

Depending on the WebSphere MQ distribution, JMS Publish/Subscribe may not be available. In this
case, the Message-Driven Bean samples provided with JOnAS will not work.



E) redhat Chapter 36.

Web Service Interoperability between JOnAS
and BEA WebLogic

This chapter describes the basic use of web services between JOnAS and WebLogic Server. It
assumes that the reader does not require any explanation about Axis-specific tasks (Axis deployment
with wsDD, etc.). Before deployment in Axis, verify that the deploy.wsdd file matches the site
machine configuration (the jndiURL parameter in particular: <parameter name="3ndiURL"
value="rmi://localhost:1099"/>).

36.1. Libraries

JOnAS incorporates all the necessary libraries, including:

+ Jax-R: Reference Implementation from Sun

+ Jax-M: Reference Implementation from Sun

+ Jax-p: Xerces XML parser (version 2.4.0)

+ AXIS: Soap implementation from Apache (with all dependent libs: jaxrpc.jar, etc.)
JAx-M and JAX-R are parts of the Web Services Development Pack from Sun.

WebLogic incorporates all the necessary libraries. The libraries for using the webservice are contained
in webserviceclient. jar.

36.2. Accessing a JOnAS Web Service from a WebLogic Server’s EJB

36.2.1. Web Service Development on JOnAS

Refer to Chapter 34 How to use Axis in JOnAS, which describes how to develop and deploy web
services on JOnAS.

36.2.1.1. EJB Creation on JOnAS

To create a web service based on an EJB, first create a stateless EJB. Then, create a web application
(.war) or an application (.ear) with this EJB that will define a URL with access to the Web Service.

36.2.1.2. WebService Deployment Descriptor (WSDD)

This section describes the deployment descriptor of the web service. To deploy a web service based
on an EJB, specify the various elements in the WSDD. This WSDD enables the web service to be
mapped on an EJB, by specifying the different EJB classes used.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<!-- AXIS deployment file for HelloBeanService -->
<service name="WebServiceName" provider="java:EJB">

<!-- JNDI name specified in jonas-EJB.xml —-->
<parameter name="beanJndiName" value="EJB_JNDI_Name"/>



258 Chapter 36. Web Service Interoperability between JOnAS and BEA WebLogic

<!-- use of remote interfaces to access the EJB is allowed, but this
example uses local interfaces -->
<parameter name="homeInterfaceName" value="EJB_Home"/>

<parameter name="remoteInterfaceName" value="EJB_Interface"/>

<!-- JNDI properties: it may be necessary to modify hostname and port
number, protocol name could be changed in accordance with the ORB
used —->

<!-- for a RMI ORB -->

<parameter name="jndiURL" value="rmi://<url>:<port>"/>

<parameter name="jndiContextClass"
value="com.sun. jndi.rmi.registry.RegistryContextFactory"/>

<!-- Specify here allowed methods for Web Service access (* for all) -->
<parameter name="allowedMethods" value="*"/>

</service>
</deployment>

The various tags allow mapping of the web service on different java classes. If a web service uses a
complex type, this complex type must be mapped with a java class. To do this, two tags can be used:

<beanMapping gName="ns:local" xmlns:ns="someNameSpace"
languageSpecificType="java:my.class"/>

This maps the QName [someNameSpace] : [local] with the class my.class.
<typeMapping gname="ns:local" wmlns:ns="someNamespace"
languageSpecificType="java:my.class" serializer="my.java.Serializer"
deserializer="my. java.DeserializerFactory"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

where OName [someNameSpace]: [local] is mapped with my.class. The serializer used is the
class my. java.Serializer and the deserializer used iS my . java.DeserializerFactory

36.2.1.3. Web Service Deployment on JONAS

First, deploy the web application or the application containing the EJB. Then, deploy the web service
using the Axis client tool:

jclient org.apache.axis.client.AdminClient
-hjonasServerHostname -p9000 deploy.wsdd

The web service WSDL is accessible from the url:

http://host:port/url-servlet/webservicename?wsdl.

36.2.2. EJB Proxy Development for WebLogic Server
This EJB provides access to the web service deployed on JOnAS from the WebLogic Server.



Chapter 36. Web Service Interoperability between JOnAS and BEA WebLogic 259

36.2.2.1. Generation of Web Service Client Class

To access the web service, generate the client class using the Ant task c1ientgen. For example:

<clientgen wsdl="<wsdl_url>" packageName="my.package"
clientJar="client.jar" generatePublicFields="True"
keep generated="True"/>

This command creates four classes:

+ Service implementation

+ Java interface

+ Stub class

+ Service interface to the corresponding web service.

The tool can also generate the Java classes corresponding to future complex types of web services.

36.2.2.2. Build the EJB

Then, call the web service in the EJB proxy code using the generated classes. For example:

try |
WSNAME_Impl tsl=new WSNAME_Impl(); // access web service impl
EJB_endpoint tsp = tsl.getEJB_endpoint ();
// access WS endpoint interface
ComplexType tr=tsp.method(param);
}  catch (Exception e) {
e.printStackTrace (System.err);

36.2.2.3. Deploy the EJB on WebLogic Server
Deploy this EJB using the WebLogic administration console.

36.3. Accessing a WebLogic Web Service from a JOnAS EJB

36.3.1. Web Service Development for WebLogic Server

36.3.1.1. Creation of an Application

To create a web service, first develop the corresponding EJB application. Compile the EJB classes and
create a JAR file. To create the EJB’s container, apply the ant task

wlappc
to the JAR file. For example:

<wlappc debug="${debug}" source="interface_ws_Jjonas.jar"
classpath="{java.class.path}:interface_ws_jonas. jar"

Then, use the ant task servicegen to create the ear application containing the web service.



260 Chapter 36. Web Service Interoperability between JOnAS and BEA WebLogic

<servicegen
destEar="ears/myWebService.ear"
contextURI="web_services" >
<service
ejbJar="jars/myEJB. jar"
targetNamespace="http://www.bea.com/examples/Trader"
serviceName="TraderService"
serviceURI="/TraderService"
generateTypes="True"
expandMethods="True" >
</service>
</servicegen>

Use the version of ant provided with WebLogic Server.

36.3.1.2. WebService Deployment

Deploy the webservice using the WebLogic administration console, and deploy the corresponding
application.

The WSDL is accessible at http://host:port/webservice/web_services?WSDL

36.3.2. EJB Proxy Development for JOnAS
This EJB provides access to the web service deployed on WebLogic from JOnAS.

36.3.2.1. Generation of Web Service Client Class

To access a web service, generate a client class using the Axis tool WSDL2Java <webservice-url-
wsdl>. This command creates four classes:

+ WSNAME_Locator.java: Service implementation

+ WSNAME_Port.java: Java Interface

+ WSNAME_PortStub.java: Stub class

+ WSNAME java: Service interface to the corresponding web service.

The tool can also generate the Java classes corresponding to future complex types of web services.

36.3.2.2. Build the EJB

Then, use this generated class to call the web service in the EJB proxy code. For example:

try {
WSNAMELocator tsl=new WSNAMELocator();
WSNAMEPort tsp = tsl.getWSNAMEPort () ;
ComplexType tr=tsp.method (param);

} catch (Exception e) {
e.printStackTrace (System.err);
}i



Chapter 36. Web Service Interoperability between JOnAS and BEA WebLogic 261

36.3.2.3. Deploy the EJB on JOnNAS

Deploy the EJB using the JOnAS administration console or command.



262 Chapter 36. Web Service Interoperability between JOnAS and BEA WebLogic



E) redhat Chapter 37.

RMI-IIOP Interoperability between JOnAS and
BEA WebLogic

This chapter describes the basic interoperability between JOnAS and a BEA WebLogic Server using
RMI-IIOP.

37.1. Accessing a JOnAS EJB from a WebLogic Server’s EJB using
RMI-IIOP

37.1.1. JOnAS Configuration

No modification to the EJB code is necessary. However, to deploy it for use with the iiop protocol,
add the tag protocols and indicate iiop when creating the build.xml. For example:

<jonas destdir="${dist.ejbjars.dir}" classpath="${classpath}"
jonasroot="${jonas.root}" protocols="iiop"/>

If GenlIC is being used for deployment, the -protocols option can be used. Note also that an EJB
can be deployed for several protocols. For more details about configuring the communication protocol,
refer to the Section 3.3 Configuring the Communication Protocol and JNDI.

For the JOnAS server to use RMI-IIOP, the JOnAS configuration requires modification. The iiop
protocol must be selected in the file carol.properties. This modification will allow an EJB to be created
using the RMI-IIOP protocol.

37.1.2. EJB Proxy on WebLogic

To call an EJB deployed on JOnAS that is accessible through RMI-IIOP, load the class
com.sun.jndi.cosnaming. CNCtxFactory as the initial context factory. In addition, specify the JNDI
URL of the server name containing the EJB to call: "iiop://<server>:port." For example:

try {
Properties h = new Properties();
h.put (Context .INITIAL_CONTEXT_FACTORY,
"com.sun. jndi.cosnaming.CNCtxFactory") ;
h.put (Context .PROVIDER_URL, "iiop://<server>:<port>");
ctx=new InitialContext (h);
}

catch (Exception e) {
}

Then, the JOnAS EJB is accessed in the standard way.



264 Chapter 37. RMI-IIOP Interoperability between JOnAS and BEA WebLogic

37.2. Access a WebLogic Server’s EJB from a JOnAS EJB using
RMI-IIOP

37.2.1. WebLogic Configuration

No modification to the EJB code is necessary. However, to deploy the EJB for use with the iiop
protocol, add the element iiop="true" on the wlappc task when creating the build.xml. For example:

wlappc debug="${debug}" source="ejb.Jjar" iiop="true"
classpath="${class.path}"

37.2.2. EJB Proxy on JOnAS

To call an EJB deployed on WebLogic Server that is accessible through RMI-IIOP, specity the JNDI
URL of the server name containing the EJB to call. This URL is of the iiop://server:port type.
For example:

try |
Properties h = new Properties();
h.put (Context .PROVIDER_URL, "iiop://server:port");
ctx=new InitialContext (h);
}

catch (Exception e) {
}

Then, the EJB deployed on WebLogic Server is accessed in the standard way.



) redhat Chapter 38.
Interoperability between JOnAS and CORBA

This chapter describes the basic interoperability between JOnAS and CORBA using RMI-IIOP.

38.1. Accessing an EJB Deployed on a JOnAS Server by a CORBA
Client

38.1.1. JOnAS Configuration

No modification to the EJB code is necessary. However, the EJB should be deployed for the iiop
protocol (for example, when the build.xml is created, add the tag "protocols" and specify "iiop").
For example:

<jonas destdir="${dist.ejbjars.dir}" classpath="${classpath}"
jonasroot="${jonas.root}" protocols="iiop"/>

If GenlC is used for deployment, the -protocols option can be used. Note also that an EJB can
be deployed for several protocols. Refer to the JOnAS Configuration Guide for more details about
configuring the communication protocol.

The JOnAS configuration must be modified for the JOnAS server to use RMI-IIOP. Choose the iiop
protocol in the file carol.properties. Refer also to the Section 3.3 Configuring the Communication
Protocol and JNDI for details about configuring the communication protocol. These modifications
will make it possible to create an EJB using the RMI-IIOP protocol.

38.1.2. Using RMIC to Create IDL Files Used by the CORBA Client

To call an EJB deployed on JOnAS that is accessible through RMI-IIOP, use the rmic tool on the EJB
Remote interface and EJB Home interface to create the idl files. For example:

rmic -classpath $JONAS_ROOT/lib/common/j2ee/ejb.jar —-idl packagel.Hello
This action generates several id1 files:

packagel/Hello.idl
packagel/HelloHome. idl

java/io/FilterOutputStream.idl
java/io/IOException.idl
java/io0/I0OEx.idl
java/io/OutputStream.idl
java/io/PrintStream.idl
java/io/Writer.idl
java/io/PrintWriter.idl

java/lang/Exception.idl
java/lang/Ex.idl
java/lang/Object.idl
java/lang/StackTraceElement.idl
java/lang/ThrowableEx.idl
java/lang/Throwable.idl

javax/ejb/EJBHome. idl



266 Chapter 38. Interoperability between JOnAS and CORBA

javax/ejb/EJBMetaData.idl
javax/ejb/EJBObject.idl
javax/ejb/Handle.idl
javax/ejb/HomeHandle.idl
javax/ejb/RemoveException.idl
javax/ejb/RemoveEx.idl

org/omg/boxedRMI/seql_octet.idl
org/omg/boxedRMI/seqgl_wchar.idl

org/javax/rmi/CORBA/ClassDesc.idl
org/omg/boxedRMI/java/lang/seql_StackTraceElement.idl

Copy these files to the directory in which CORBA client development is being done.

38.1.3. CORBA Client Development

38.1.3.1. idlj

Once idl files are generated, apply the idlj tool to build Java files corresponding to the idl files (idlj =
idl to java). To do this, apply the id]j tool to the Remote interface idl file and the Home interface idl
file. For example:

idlj -fclient -emitAll packagel/Hello.idl

The id]j tool also generates bugged classes. Be sure to put the _read and _write method in comments
in the classes _Exception.java, CreateException.java, RemoveException. java.

Additionally, the classes OutputStream.ijava, PrintStream.java, PrintWriter.java,
Writer.java,and FilterOuputStream. java must extend Serializable and then replace

((org.omg.CORBA_2_3.portable.OutputStream)
ostream) .write_value (value,id());

with

((org.omg.CORBA_2_3.portable.OutputStream)
ostream) .write_value ((Serializable) value,id());

in the write method.

38.1.3.2. The CORBA Client
Create the CORBA client:

import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class Client {
public static void main(String args[]) {
try {

//Create and initialize the ORB

ORB orb=ORB.init (args,null);

//Get the root naming context

org.omg.CORBA.Object
objRef=orb.resolve_initial_references ("NameService");

NamingContext ncRef= NamingContextHelper.narrow (objRef) ;



Chapter 38. Interoperability between JOnAS and CORBA 267

//Resolve the object reference in naming

//make sure there are no spaces between ""

NameComponent nc= new NameComponent ("HelloHome","");
NameComponent path[] = {nc};

HelloHome tradeRef=HelloHomeHelper.narrow (ncRef.resolve (path));

//Call the Trader EJB and print results
Hello hello=tradeRef.create();
String tr=hello.say();
System.out.println("Result = "+tr);

}

catch (Exception e) {
System.out.println ("ERROR / "+e);
e.printStackTrace (System.out) ;

38.1.3.3. Compilation
Compile the generated files.

AWarning

Compile the file corresponding to the client parts, the files Hello.java, HelloHome.java,
_Exception.java, ..., and _*Stub. java, *Helper.java, *ValueFactory. java, *Operation.java
(* represents the name of the interface).

38.2. Accessing a CORBA Service by an EJB Deployed on JOnAS
Server

38.2.1. Setting up the CORBA Service
Create the CORBA service:

—_

. Create the id1 file corresponding to this service (for example, the interface name, which is
"Hello").

2. Generate the Java file corresponding to the idl service:
idlj -fall Hello.idl

3. Implement the Java interface (in this example, the service will be bound with the name "Hello"
in the server implementation).

4. Start the orb.
5. Start the CORBA service.



268

Chapter 38. Interoperability between JOnAS and CORBA

38.2.2. Setting up the EJB on JOnAS
Set up the EJB on JOnAS as follows:

—_

6

. To call the CORBA service, generate the Java file corresponding to the idl file. To do this, apply

the id]j tool on the idl file corresponding to the CORBA service description:
idlj -fclient Hello.idl

2. Create an EJB.

3. To call the CORBA service, initialize the orb by specifying the host and the port.
4.
5

Get the environment.

. Get the Java object corresponding to the CORBA service with the environment.

. Call the method on this object.

Example code:

try {

String[] h=new String[4];
h[0]="-ORBInitialPort";
h[1l]=port;
h[2]="-ORBInitialHost";
h[3]=host;

ORB orb=ORB.init (h,null);

// get a reference on the context handling all services
org.omg.CORBA.Object
objRef=orb.resolve_initial_references ("NameService");

NamingContextExt ncRef=NamingContextExtHelper.narrow (objRef);
Hello hello=HelloHelper.narrow(ncRef.resolve_str ("Hello"));
System.out.println (hello.sayHello());

return hello.sayHello();

}

catch (Exception e) {

}



E) redhat Chapter 39.

How to Migrate the New World Cruises
Application to JOnAS

This section describes the modifications required to migrate the J2EE application “New World Cruise”
to a JOnAS server.

“New World Cruise” is a sample application that comes with Sun ONE Application Server. (See
http://developers.sun.com/sw/building/tech_articles/jaxrpc/synopsis.html.)

39.1. JONAS Configuration

The first step is to configure the database used for this application. Copy the file db.properties to
the directory $JONAS_BASE/conf. Edit this file to complete the database connection.

Then, modify the JOnAS DBM database service configurations in the file
$JONAS_BASE/conf/jonas.properties,to specify the file containing the database connection.

39.1.1. New World Cruise Application

39.1.1.1. EJB Modification Code

To be EJB2.0-compliant, add the exceptions RemoveException and CreateException for EJB’s meth-
ods ejpRemove and ejbCreate.

Additionally, the GlueBean class uses a local object in GlueBean constructor. However, it must use a
remote object because it is a class calling an EJB. Therefore, modify the comment in this class with
the following:

// If using the remote interface, the call would look like this
cruiseManagerHome = (CruiseManagerHome)

javax.rmi.PortableRemoteObject.narrow (result, CruiseManagerHome.class);
// Using the local interface, the call looks like this
//cruiseManagerHome = (CruiseManagerHome) result;

39.1.2. EJB’s Deployment Descriptor

There are three EJBs, thus there must be three e jb-jar.xml files that correspond to the EJB’s de-
ployment descriptors and three jonas-ejb-jar.xml files that correspond to the JOnAS deployment
descriptors.

First, rename the files e jb_name.ejbdd with e jb_name.xml (these files contain the EJB deploy-
ment descriptors).

Create the three jonas-e jb_name.xml files corresponding to the EJBs.

For the two entity Beans (Cruise and CruiseManager), describe the mapping between:

+ The EJB name and JNDI name (JNDI name=ejb/e jb name)
» The JDBC and the table name

» The EJB field and the table field, (the version of CMP is not specified in ejb-jar and JOnAS by
default uses CMP1.1).



270 Chapter 39. How to Migrate the New World Cruises Application to JOnAS

For the session Bean, describe the mapping between:

+ The EJB name and JNDI name (JNDI name=ejb/e jb name)

39.1.3. Web Application

Create the jonas-web.xml that corresponds to the deployment descriptor of the New
World Cruise application. Package the jonas-web.xml and the files under the directory
Cruises/cruise_WebModule in the WAR file.

39.1.4. Build Application
Build the EAR corresponding to the application.

This EAR contains the three files corresponding to the three EJBs, as well as the web application.

39.2. SUN Web Service

39.2.1. Axis Classes Generation

To call a web service, first generate Axis classes. The generated classes will allow a web service to be
called using the static method.

For this step, download the file AirService.wsdl that corresponds to the SUN web service description
or use the URL containing this file.

Then use the command:
java org.apache.axis.wsdl.WSDL2java <file_name>

This command generates four Java files:

AirService.java: the service interface.
AirServiceLocator.java: the service implementation
AirServiceServantInterface: the endpoint interface
AirServiceServantInterfaceBindingStub.java: the stub class

To call the SUN web service, instantiate the service implementation. Then call the method getAirSer-
vice() to get the end point, and call the appropriate method.

AirService airService=new AirServicelocator();
AirServiceServantInterface interface=airService getAirService();
Object result=interface.<method>;

39.2.2. JSP Files
The file Part2_site.zip contains the web application that uses the SUN web service.
It includes several JSP files that must be modified to use the Axis classes.

As an example, make the following replacements in the index.jsp file:



Chapter 39. How to Migrate the New World Cruises Application to JOnAS 271

// Get our port interface
AirPack.AirClientGenClient.AirService service =
new AirPack.AirClientGenClient.AirService_Impl();
AirPack.AirClientGenClient.AirServiceServantInterface port =
service getAirServiceServantInterfacePort ();

// Get the stub and set it to save the HTTP log.
AirPack.AirClientGenClient.AirServiceServantInterface_Stub stub =
(AirPack.AirClientGenClient.AirServiceServantInterface_Stub) port;
java.ilo.ByteArrayOutputStream httpLog =
new java.lo.ByteArrayOutputStream();
stub._setTransportFactory
(new com.sun.xml.rpc.client.http.HttpClientTransportFactory (httpLog));

// Get the end point address and save it for the error page.
String endPointAddress = (String)

stub._getProperty (stub.ENDPOINT_ADDRESS_PROPERTY) ;
request.setAttribute ("ENDPOINT_ADDRESS_PROPERTY", endPointAddress);

by

// Get our port interface
AirService_pkg.AirService service = new AirService_pkg.AirServiceLocator();
AirService_pkg.AirServiceServantInterface port =

service getAirServiceServantInterfacePort ();

Additionally, the exception:

throw new com.sun.xml.rpc.client.ClientTransportException (null,
new Object[] {e});

is replaced by:

throw new Exception (e);

39.2.3. Web Application

Finally, create the web application (jonas-web.xml) and reuse the web.xml that is in
Part2_site.zip. Then, build the web application, which contains:

META-INF/

META-INF/MANIFEST.MF

WEB-INF/

WEB-INF/Jjonas-web.xml

WEB-INF/1lib/

WEB-INF/lib/CruiseManager. jar

WEB-INF/classes/

WEB-INF/classes/AirService_pkg/
WEB-INF/classes/AirService_pkg/AirServiceServantInterface.class
WEB-INF/classes/AirService_pkg/AirServiceServantInterfaceBindingStub.class
WEB-INF/classes/AirService_pkg/AirService.class
WEB-INF/classes/AirService_pkg/AirServicelocator.class
PalmTree. jpg

aboutus. Jjsp

air_icon.gif

airbook. jsp

airclient.jsp

airdates. jsp

airdone. jsp



272 Chapter 39. How to Migrate the New World Cruises Application to JOnAS

airlist.Jjsp
clear.gif
crubook. jsp
crudone. jsp
cruise_icon.gif
cruises. jsp
flights. jsp
index. jsp
nwcl_banner.gif
nwcl_banner_a.gif
nwcl_styles.css
WEB-INF/web.xml

39.3. JOnAS Web Service

39.3.1. Deployment

This web service uses the EJB stateless CruiseManager. To deploy this web service, create the web
service deployment descriptor:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns: java="http://xml.apache.org/axis/wsdd/providers/java">

<!-— AXIS deployment file for EJB Cruise -->
<service name="AirService" provider="java:EJB">

<!-— JNDI name specified in jonas-CruiselApp. -->
<parameter name="beanJndiName"
value="ejb/CruiseManager"/>

<!-- you can use remote interfaces to access the EJB -->
<parameter name="homeInterfaceName"
value="cruisePack.CruiseManagerHome" />
<parameter name="remoteInterfaceName"
value="cruisePack.CruiseManager"/>

<!-- Specify allowed methods for Web Service access
(* for all) -->
<parameter name="allowedMethods"
value="createPassenger,getAllDates, getByDepartdate" />

<typeMapping
xmlns:ns="urn:AirService/types"
gname="ns:ArrayOfString"
type="java:java.lang.String[]"
serializer="org.apache.axis.encoding.ser.ArraySerializerFactory"
deserializer="org.apache.axis.encoding.ser.ArrayDeserializerFactory"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

/>

</service>

</deployment>

To deploy this web service, first deploy the web application axis.war and the EJB corresponding to
the web service (CruiseManager. jar).

Then, deploy the web service using the Axis client:



Chapter 39. How to Migrate the New World Cruises Application to JOnAS 273

jclient org.apache.axis.client.AdminClient
-lhttp://localhost:port/context-root-axis.war/servlet/AxisServlet
ws_wsdd

39.3.2. Axis Classes Generation

To call a web service, first generate Axis classes. The generated classes will allow a web service to be
called using the static method.

For this step, download the file Ai rService.wsdl corresponding to the SUN web service description
or use the URL containing this file.

The use of the command is as follows:
java org.apache.axis.wsdl.WSDL2java <file_name or url>

This command generates four Java files:
CruiseManagerService.java: the service interface
CruiseManagerServiceLocator.java: the service implementation
CruiseManager.java: the endpoint interface
AirServiceSoapBindingStub.java: the stub class.

To call the JOnAS web service, instantiate the service implementation. Then, call the method
getAirService() to get the end point interface, and call the appropriate method.

AirService_JOnAS.Client.CruiseManagerService cms=
new AirService_JOnAS.Client.CruiseManagerServiceLocator();

AirService_JOnAS.Client.CruiseManager cmi=cms.getAirService();

Object result=cmi.<method>;

39.3.3. JSP Files

To access the JOnAS web service, copy the JSP files contained in the EJB’s web application
(Cruises/cruise_WebModule).

The JOnAS web service call must replace the call for each EJB.

39.3.4. Web Application

Finally, create the web application jonas-web . xml. Then, build the web application, which contains:

META-INF/

META-INF/MANIFEST .MF

WEB-INF/

WEB-INF/Jjonas-web.xml

WEB-INF/1lib/

WEB-INF/lib/CruiseManager. jar

WEB-INF/classes/

WEB-INF/classes/AirService_pkg/
WEB-INF/classes/AirService_JOnAS/Client/CruiseManagerService.class
WEB-INF/classes/AirService_JOnAS/Client/AirServiceSoapBindingStub.class
WEB-INF/classes/AirService_JOnAS/Client/CruiseManager.class



274 Chapter 39. How to Migrate the New World Cruises Application to JOnAS

WEB-INF/classes/AirService_JOnAS/Client/ \
CruiseManagerServiceLocator/AirServiceLocator.class
PalmTree. jpg
aboutus. jsp
air_icon.gif
airbook. jsp
airclient.jsp
airdates. jsp
airdone. jsp
airlist.Jjsp
clear.gif
crubook. jsp
crudone. jsp
cruise_icon.gif
cruises. jsp
flights. jsp
index. jsp
nwcl_banner.gif
nwcl_banner_a.gif
nwcl_styles.css
WEB-INF/web.xml



5) redhat
Chapter 40.

Configuring JDBC Resource Adapters

Instead of using the JOnAS database service for configuring DataSources, it is also possible to use
the JOnAS resource service and JDBC connectors compliant with the J2EE Connector Architecture
specification. The resulting functionality is the same, and the benefit is the management of pools
of JDBC PrepareStatements. This chapter describes how the JDBC Resource Adapters should be
configured to connect the application to databases.

40.1. Configuring Resource Adapters

For both container-managed or bean-managed persistence, the JDBC Resource Adapter (JDBC RA)
makes use of relational storage systems through the JDBC interface. JDBC connections are obtained
from a JDBC RA. The JDBC RA implements the J2EE Connector Specification using the DataSource
interface as defined in the JDBC 2.0 standard extensions. An RA is configured to identify a database
and a means to access it via a JDBC driver. Multiple JDBC RAs can be deployed either via the
jonas.properties file or included in the autoload directory of the resource service. For complete
information about RAs in JOnAS, refer to Chapter 41 Configuring Resource Adapters. The following
section explains how JDBC RARs can be defined and configured in the JOnAS server.

To support distributed transactions, the JDBC RA requires the use of at least a JDBC2-XA-compliant
driver. Such drivers implementing the XADataSource interface are not always available for all rela-
tional databases. The JDBC RA provides a generic driver-wrapper that emulates the XADataSource
interface on a regular JDBC driver. It is important to note that this driver-wrapper does not ensure a
real two-phase commit for distributed database transactions.

The generic JDBC RAs of JOnAS provide implementations of the DriverManager, DataSource,
PooledConnection, and XAConnection interfaces. These can be configured using a JDBC-compliant
driver for some relational database management server products, such as Oracle, PostgreSQL, or
MySQL.

The remainder of this section, which describes how to define and configure JDBC RAs, is specific to
JOnAS. However, the way to use these JDBC RAs in the Application Component methods is standard;
that is, via the resource manager connection factory references (refer to the example in Section 8.6
Writing Database Access Operations (Bean-Managed Persistence) in Chapter 8 Developing Entity
Beans).

An RAR file must be configured and deployed (for example, Oraclel.rar for an Oracle RAR and
MySQL1.rar fora MySQL RAR, as delivered with the platform).

To define a Resource “Oraclel” in the jonas.properties file, add its name “Oraclel” (name of
the RAR file) to the line jonas.service.resource.services or just include it in the autoload
directory. For more information about deploying an RAR, refer to Chapter 41 Configuring Resource
Adapters.

jonas.service.resource.services Oraclel,MySQL1l,PostgreSQL1l

The jonas-ra.xml file that defines a DataSource should contain the following information:

jndiname JNDI name of the RAR

URL The JDBC database URL: jdbc:database_vendor_subprotocol....
dsClass Name of the class implementing the JDBC driver

user Database user name




276 Chapter 40. Configuring JDBC Resource Adapters

password Database user password

An RAR for Oracle configured as jdbc_1 in JNDI and using the Oracle thin DriverManger JDBC
driver, should be described in a file called Oraclel_DM. rar, with the following properties configured
in the jonas-ra.xml file:

<Jjndiname>jdbc_1</jndiname>
<rarlink>JOnASJDBC_DM</rarlink>

<Jjonas-config-property>
< jonas-config-property-name>user</jonas-config-property-name>
< jonas-config-property-value>scott</jonas-config-property-value>

</jonas-config-property>

< jonas-config-property>
< jonas-config-property-name>password</jonas-config-property-name>
<jonas-config-property-value>tiger</jonas-config-property-value>

</jonas-config-property>

<Jjonas-config-property>
<jonas-config-property-name>loginTimeout</jonas-config-property-name>
<jonas-config-property-value></jonas-config-property-value>

</jonas-config-property>

< jonas-config-property>
<Jjonas-config-property-name>URL</jonas-config-property-name>
<Jjonas—-config-property-value>jdbc:oracle:thin:@malte:1521:0RAl

</jonas-config-property-value>

</jonas-config-property>

<Jjonas-config-property>
<jonas-config-property-name>dsClass</jonas-config-property-name>
<jonas-config-property-value>oracle. jdbc.driver.OracleDriver

</jonas-config-property-value>

</Jjonas-config-property>

< jonas-config-property>
< jonas-config-property-name>mapperName</jonas—-config-property-name>
<jonas-config-property-value>rdb.oracle</jonas-config-property-value>

</jonas-config-property>

In this example, “malte” is the hostname of the server running the Oracle DBMS, 1521 is the SQL*Net
V2 port number on this server, and ORA1 is the ORACLE_SID.

This example makes use of the Oracle “Thin”” JDBC driver. For an application server running on the
same host as the Oracle DBMS, you can use the Oracle OCI JDBC driver; in this case, the URL to use
is jdbc:oracle:oci7: or jdbc:oracle:oci8:, depending on the Oracle release. Oracle JDBC drivers can be
downloaded from the Oracle web site http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html.

To create a MySQL RAR configured as jdbc_2 in JNDI, it should be described in a file called
MySQL2_DM. rar, with the following properties configured in the jonas-ra.xml file:

< jndiname>jdbc_2</jndiname>
<rarlink>JOnASJDBC_DM</rarlink>

< jonas-config-property>
< jonas-config-property-name>user</jonas-config-property-name>
< jonas-config-property-value></jonas-config-property-value>
</jonas-config-property>
<Jjonas-config-property>
< jonas-config-property-name>password</jonas-config-property-name>
< jonas-config-property-value></jonas-config-property-value>
</jonas-config-property>



Chapter 40. Configuring JDBC Resource Adapters 277

<Jjonas-config-property>
<jonas-config-property-name>loginTimeout</jonas-config-property-name>
<jonas-config-property-value></jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
<Jjonas-config-property-name>URL</jonas-config-property-name>
< jonas-config-property-value>jdbc:mysqgl://malte/db_jonas
</jonas-config-property-value>
</jonas-config-property>
<Jjonas-config-property>
< jonas-config-property-name>dsClass</jonas-config-property-name>
<Jjonas—-config-property-value>org.gjt.mm.mysql.Driver
</jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
< jonas-config-property-name>mapperName</jonas—-config-property-name>
<jonas-config-property-value>rdb.mysql</jonas-config-property-value>
</jonas-config-property>

To create a PostgreSQL RAR configured as jdbc_3 in JNDI, it should be described in a file called
PostGreSQL3_DM. rar, with the following properties configured in the jonas-ra.xml file:

<Jjndiname>jdbc_3</jndiname>
<rarlink>JOnASJDBC_DM</rarlink>

<Jjonas-config-property>
< jonas-config-property-name>user</jonas-config-property-name>
< jonas-config-property-value>jonas</jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
< jonas-config-property-name>password</jonas-config-property-name>
<jonas-config-property-value>jonas</jonas-config-property-value>
</jonas-config-property>
<Jjonas-config-property>
<jonas-config-property-name>loginTimeout</jonas-config-property-name>
< jonas-config-property-value></jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
<Jjonas-config-property-name>URL</jonas-config-property-name>
< jonas-config-property-value>jdbc:postgresqgl:/malte:5432/db_jonas
</jonas-config-property-value>
</jonas-config-property>
<Jjonas-config-property>
<Jjonas-config-property-name>dsClass</jonas-config-property-name>
<Jjonas—-config-property-value>org.postgresql.Driver
</jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
< jonas-config-property-name>mapperName</jonas—-config-property-name>
<jonas-config-property-value>rdb.mpostgres</jonas-config-property-value>
</jonas-config-property>

The database user and password can be handled in one of two ways:

+ Put it in the jonas-ra.xml file in the RAR file and have the Application Components use the
getConnection () method.

+ Not have it in the RAR file and have the Application Component use the getConnection (String
username, String password) method.



278 Chapter 40. Configuring JDBC Resource Adapters

40.2. Using CMP2.0/JORM

For implementing the EJB 2.0 persistence (CMP2.0), JOnAS relies on the JORM framework (see
http://www.objectweb.org/jorm/index.html). JORM must adapt its object-relational mapping to the
underlying database, and makes use of adapters called “mappers” for this purpose. Thus, for each type
of database (and more precisely for each JDBC driver), the corresponding mapper must be specified in
the jonas-ra.xml file of the deployed RAR. The mapperName element is provided for this purpose.

The JORM database mapper that has the property name mapperName can have the following values:

+ rdb: generic mapper (JDBC standard driver ...)

+ rdb.postgres: mapper for PostgreSQL

+ rdb.oracle8: mapper for Oracle 8 and lesser versions

+ rdb.oracle: mapper for Oracle 9

+ rdb.mckoi: mapper for McKoi Db

+ rdb.mysql: mapper for MySQL

Refer to the JORM documentation for a complete updated list.

40.3. ConnectionManager Configuration

Each RAR uses a connection manager that can be configured via the additional properties described in
the following table. The Postgresl. jonas-ra.xml file provides an example of the settings. These
settings all have default values and they are not required.

Property name Description Default Value
pool-init Initial number of connections 0
pool-min Minimum number of connections 0
pool-max Maximum number of connections -1 (unlimited)
pool-max-age Number of milliseconds to keep the connection 0 (unlimited)
pstmt-max Maximum number of PreparedStatements cached per | 10

connection

Table 40-1. pool-params elements

Property name Description Default Value

jdbe-check-level JDBC connection checking level 0 (no check)

jdbe-test-statement | test statement

Table 40-2. jdbc-conn-params elements

jdbe-test-statement is not used when jdbc-check-level is equal to O or 1.

40.4. Tracing SQL Requests through P6Spy

The P6Spy tool is integrated into JOnAS and it provides an easy way to trace the SQL requests sent
to the database.



Chapter 40. Configuring JDBC Resource Adapters 279

To enable this tracing feature, perform the following configuration steps:

—_

. Update the appropriate RAR file’s jonas-ra.xml file by setting the dsClass property to
com.pbspy.engine.spy.P6SpyDriver.

2. Set the realdriver property in the spy.properties file (located in $JONAS_BASE/conf)
to the JDBC driver of your actual database.

3. Verify that logger.org.objectweb.jonas.jdbc.sgl.level is set to DEBUG in
SJONAS_BASE/conf/trace.properties.

Example:

jonas-ra.xml file content:

< jonas-resource>
<Jjndiname>jdbc_3</jndiname>
<rarlink>JOnASJDBC_DM</rarlink>
<native-lib></native-1lib>
<log-enabled>true</log-enabled>
<log-topic>org.objectweb. jonas. jdbc.DMPostgres</log-topic>
<pool-params>
<pool-init>0</pool-init>
<pool-min>0</pool-min>
<pool-max>100</pool-max>
<pool-max-age>0</pool-max-age>
<pstmt-max>10</pstmt-max>
</pool-params>
< Jjdbc-conn-params>
< jdbc-check-level>0</jdbc-check-level>
< jdbc-test-statement></jdbc-test-statement>
</jdbc-conn-params>
< jonas-config-property>
<jonas-config-property-name>user</jonas-config-property-name>
<jonas-config-property-value>jonas</jonas-config-property-value>
</jonas-config-property>
<jonas-config-property>
< jonas-config-property-name>password</jonas-config-property-name>
<jonas-config-property-value>jonas</jonas-config-property-value>
</jonas-config-property>
< jonas-config-property>
<jonas-config-property-name>loginTimeout</jonas-config-property-name>
<jonas-config-property-value></jonas-config-property-value>
</jonas-config-property>
<Jjonas-config-property>
<jonas-config-property-name>URL</jonas-config-property-name>
<jonas-config-property-value>jdbc:postgresql://your_host:port/your_db
</jonas-config-property-value>
</Jjonas-config-property>
< jonas-config-property>
<Jjonas-config-property-name>dsClass</jonas-config-property-name>
<Jjonas—-config-property-value>com.p6spy.engine.spy.P6SpyDriver
</jonas-config-property-value>
</jonas-config-property>
<Jjonas-config-property>
< jonas-config-property-name>mapperName</jonas-config-property-name>
<Jjonas-config-property-value>rdb.postgres</jonas-config-property-value>
</Jjonas-config-property>
< jonas-config-property>
<Jjonas-config-property-name>logTopic</jonas-config-property-name>
< Jjonas-config-property-value>org.objectweb. jonas. jdbc.DMPostgres
</jonas-config-property-value>
</jonas-config-property>



280 Chapter 40. Configuring JDBC Resource Adapters

</jonas-resource>

In the $JONAS_BASE/conf/spy.properties file:
realdriver=org.postgresqgl.Driver

In $JONAS_BASE/conf/trace.properties:

logger.org.objectweb. jonas. jdbc.sgl.level DEBUG

40.5. Migration from dbm Service to the JDBC RA

The migration of a Database.properties file to a similar Resource Adapter can be accomplished
through the execution of the following RAConfig tool command. Refer to Section 6.7 RAConfig for a
complete description.

RAConfig —-dm -p MySQL $JONAS_ROOT/rars/autoload/JOnAS_jdbcDM MySQL

This command will create a MySQL. rar file based on the MySQL.properties file, as specified by
the —p parameter. It will also include the <rarlink> to the JOnAS_jdbcDM. rar, as specified by the
—dm parameter.

The jonas-ra.xml created by the previous command can be updated further, if desired. Once the
additional properties have been configured, update the My SQL . rar file using the following command:

RAConfig -u jonas-ra.xml MySQL



s) redhat

Chapter 41.
Configuring Resource Adapters

This chapter describes how to use resource adapters with JOnAS.

41.1. Principles

Resource Adapters are packaged for deployment in a standard Java programming language Archive
file called a RAR file (Resource ARchive), which is described in the J2EE Connector Architecture
specification.

The standard method of creating the jonas-ra.xml file is by using the RAConfig tool, for a complete
description see Section 6.7 RAConfig.

41.2. Description and Examples

The jonas-ra.xml contains JOnAS-specific information describing deployment information, log-
ging, pooling, JDBC connections, and RAR configuration property values.

+ Deployment Tags:

«+ jndiname: (Required) Name the RAR will be registered as. This value will be used in the
resource-ref section of an EJB.

« rarlink: The JNDI Name of a base RAR file. Useful for deploying multiple connection factories
without having to deploy the complete RAR file again. When this is used, the only entry in the
RAR is META-INF/jonas-ra.xml.

.

native-lib: Directory where additional files in the RAR should be deployed.

» Logging Tags:
« log-enabled: Determines if logging should be enabled for the RAR.

« log-topic: Log topic to use for the PrintWriter logger, which allows a separate handler for each
deployed RAR.

+ Pooling Tags:
« pool-init: Initial size of the managed connection pool.
« pool-min: Minimum size of the managed connection pool.
+ pool-max: Maximum size of the managed connection pool. Value of -1 is unlimited.

« pool-max-age: Maximum number of milliseconds to keep the managed connection in the pool.
Value of 0 is an unlimited amount of time.

- pstmt-max: Maximum number of PreparedStatements per managed connection in the pool. Only
required with JDBC resource adapters. Value of 0 is unlimited; -1 disables the cache.

+ JDBC Connection Tags: Only valid with a Connection implementation of java.sql.Connection.



282 Chapter 41. Configuring Resource Adapters

« jdbc-check-level: Level of checking that will be done for the JDBC connection. Values are 0 for
no checking, 1 to validate that the connection is not closed before returning it, and greater than 1
to send the jdbe-test-statement.

« jdbc-test-statement: Test SQL statement sent on the connection if the jdbc-check-level is set
accordingly.

+ Config Property Value Tags:
- Each entry must correspond to the config-property specified in the ra.xml of the RAR file.

41.2.1. Examples

The following portion of a jonas-ra.xml file illustrates linking to a base RAR file named BaseRar.
All properties from the base RAR will be inherited and any values given in this jonas-ra.xml will
override the other values.

< jonas-resource>
<jndiname>rarl</jndiname>
<rarlink>BaseRar</rarlink>
<native-lib>nativelib</native-1lib>
<log-enabled>false</log-enabled>
<log-topic>com.xxx.rarl</log-topic>
< jonas-config-property>
< jonas-config-property-name>ip</Jjonas-config-property-name>
< jonas-config-property-value>www.xxx.com</jonas-config-property-value>
</jonas-config-property>

</.jonasfresource>
The following portion of a jonas-ra.xml file shows the configuration of a JDBC RAR file.

<Jjonas-resource>
<jndiname>jdbcl</jndiname>
<rarlink></rarlink>
<native-lib>nativelib</native-1lib>
<log-enabled>false</log-enabled>
<log-topic>com.xxx.jdbcl</log-topic>
<pool-params>
<pool-init>0</pool-init>
<pool-min>0</pool-min>
<pool-max>100</pool-max>
<pool-max-age>0</pool-max-age>
<pstmt-max>20</pstmt-max>
</pool-params>
< Jjdbc-conn-params>
< jdbc_check-level>2</jdbc_check-level>
< jdbc-test-statement >select 1</jdbc-test-statement>
< /Jjdbc-conn-params>
< jonas-config-property>
< jonas-config-property-name>url</jonas-config-property-name>
<jonas-config-property-value>jdbc:oracle:thin:@test:1521:DB1
</jonas-config-property-value>
</jonas-config-property>

</Jjonas-resource>



Index CMP2.0
deployment descriptor, 95
EJB implementation class, 94

Symbols new features, 94
CMP2.0 persistence
$JONAS_BASE using, 94
defaults to $JONAS_ROOT, 21 CMP2.0/JORM, 52
using, 278
CMR fields mapping
A to primary-key-fields
1-1 bidirectional relationships, 101, 111
Ant e . .
EIB tasks. 211 1-1 unidirectional relationships, 99
asks, 1-N bidirectional relationships, 104
Apache

1-N unidirectional relationships, 103

N-1 unidirectional relationships, 106

N-M bidirectional relationships, 109

N-M unidirectional relationships, 107, 113
command reference, 59
Communication and Naming Service

configuring for a cluster, 237
application deployment, 151
Axis
deploying Web Services with, 250
Embedded webapp, 250

tests, 250 overview, 5

IO(?IS’ 250 communication protocol

unique webapp, 249 choosing, 23

using in JOnAS, 249 component interface

of Entity Beans, 79, 82
configuration

B logging system (monolog), 24
bean implementation class multi-protocol, 24

of Entity Beans, 79 of a datasource resource, 34

Bean-Managed Persistence of a mail factory, 42
for Entity Beans, 80 of a memory resource, 34

of a MimePartDataSource mail factory, 42

Bean-managed transactions, 137
of a Session mail factory, 42

of an LDAP resource, 35
C of client authentication, 36
of JOnAS for a mail factory, 42
class loader hierarchy of mapping principal/roles, 33
commons class loader, 55 of the communication protocol, 23
JOnAS class loaders, 56 of the JMS service, 40
understanding, 55 of the jmx service, 41
client component deployment descriptors, 173 of the mail service, 41
client container of the resource service, 41
configuring, 171 overview, 21
client packaging, 177 configuration file
clients jonas.properties, 22
launching, 171 configuration scripts
specifying, 172 config_env, 22
cluster setenv, 22
architecture, 235 ConnectionManager
configuring Apache, Tomcat, and JOnAS for, 235 configuration, 53, 278
clustering connector architecture, 193
and performance, 11 Container-Managed Persistence
cmi for Entity Beans, 79
load balancing at the EJB level, 241 CORBA
CMI configuration, 242 accessing an EJB, 265
CMI principles, 242 client development, 266

CMP fields mapping, 98 interoperability with JOnAS, 265



284

D JAX-RPC, 219
database access operations Stateless Session Bean (SSB), 219
configuring for container-managed persistence, 91 Enterprise Bean

writing, 89
Database Service performing JMS operations, 205
overview, 7 Enterprise Bean class
dbm (Database Manager service), 26
configuring, 31
configuring Oracle, 31 Enterprise Bean environment
configuring other databases, 32
declarative transaction management, 135
Deployment Descriptor introduction, 141
defining, 129
for CMP2.0, 95
of Entity Beans, 79 Enterprise Beans

distributed transaction management, 137 deployment and installation, 151

of Entity Beans, 85

entries, 141

resource references, 141

EJB references, 142

E resource environment references, 142
ear (EAR service), 27 Entity Beans
configuring, 30 bean implementation class, 79
EAR class loader, 56
EAR Container Service component interface, 79, 82
overview, 6 deployment descriptor, 79

Ear Deployment Descriptor
advanced example, 182
defining, 181 Enterprise Bean class, 85
simple example, 181

EAR Packaging, 183

EJB Primary Key class, 79, 82
accessing a CORBA service, 267
accessing from a servlet or JSP page, 160
deployment and installation, 151

EJB (EJB Container), 27

developing, 79

home interface, 79, 80

environment variables

JONAS_BASE, 21

configuring, 28
EJB 1.1 specification, 94
EJB 2.0 specification, 94 G
EJB applications
Bean-managed transactions, 137 GenlC (command), 65

declarative transaction management, 135
distributed transaction management, 137
running, 15
transactional behavior, 135 H
EJB class loader, 56
EJB container
creating from an EJB-JAR file, 28
EJB Container Service of Entity Beans, 79, 80
overview, 5
EJB implementation class, 94
EJB Packaging, 149

home interface

ejbjar |
example, 212
parameters, 211 In-Memory-Session-Replication technique, 235
using, 211

endpoint



J

J2EE, 1
J2EE applications
deployment and installation, 151, 153
J2EE clients
launching, 171
J2EE Connector Architecture Service
overview, 9
Java clients
login modules, 215
Java Connector Architecture, 193
JAX-RPC endpoint, 219
jclient
deploying Web Services with, 250
jclient (command), 62
JDBC Resource Adapters
configuring, 275
JK module
configuring, 237
IMS
accessing the destination object, 199
administration, 204
and authentication, 201
and transactions, 200
EJB example, 207
pre-installed and configured, 197
rules and restrictions, 201
using, 197
writing operations, 197, 199
jms (Java Message Service), 27
configuring, 40
JmsServer (command), 67
jmx (administration console), 26
configuring, 41
IJNDI
configured from carol.properties file, 16
JNDI access
configuring, 171
JOnAS
and Web Services, 217
architecture, 4
built-in services, 189
command reference, 59
Communication and Naming Service, 5
configuration and deployment facilities, 10
configuring for a cluster, 238
configuring for a mail factory, 42
Database Service, 7
development and deployment environment, 10
development environments, 11
EAR Container Service, 6
EJB Container Service, 5
features, 2
future development, 13
getting started with, 15

285

interoperability with CORBA, 265
J2EE Connector Architecture Service, 9
Java standard conformance, 3
key features, 3
Mail Service, 10
Management Service, 10
Messaging Service, 8
overview, 1
Registry, 5
Security service, 7
services, 187
using with Axis, 249
WEB Container Service, 6
web service interoperability with Weblogic, 257
using RMI-IIOP, 263
WebServices service, 10
jonas (command), 59
JOnAS class loaders
EAR class loader, 56
EJB class loader, 56
WEB class loader, 56
JOnAS commands
GenlC, 65
jclient, 62
JmsServer, 67
jonas, 59
newbean, 63
RAConfig, 68
registry, 65
JOnAS database mappers, 95
JOnAS database mapping, 97
JOnAS examples
basic, 15
complex, 16
with database access, 17
JOnAS services
configuring, 26
dbm, 26
configuring, 31
ear, 27
configuring, 30
EJB
configuring, 28
EJB Container, 27
jms, 27
configuring, 40
jmx, 26
configuring, 41
jtm, 26
configuring, 30
mail, 27
configuring, 41
registry, 26
configuring, 28
resource, 26
configuring, 41



286

security, 27
configuring, 32
web
configuring, 28
WEB Container, 27
WebServices, 27
configuring, 29
JOnAS traces
controlling output, 26
jonas-web.xml, 221
jonas-webservices.xml, 221
jonas.properties
configuration file, 22
modifying for a service, 188
jonas.service.registry.mode
values, 28
JONAS_BASE
defaults to JONAS_ROOT, 21
environment variable, 21
jonas_ejb module
setting the DEBUG level, 26
JORM
using, 278
JORM framework, 95
JSP pages
accessing an EJB from, 160
developing, 157
introduction, 157
jtm (JOnAS Transaction Manager), 26
configuring, 30
jvmRoute
defining, 238

L

load balancing

at the EJB level with cmi, 241

at the web level with mod_jk, 236
logging system (monolog), 24
login modules, 215

mail (mail service), 27
configuring, 41

mail factory
configuring, 42

Mail Service
overview, 10

Management Service
overview, 10

MBeans
expose management methods, 10

MDB (Message-Driven Beans)
administering, 121

description, 119

developing, 119

overview, 119

running, 122

transactional aspects, 124
Message-Driven Bean pool

tuning, 126
Message-Driven Beans (MDB)

administering, 121

description, 119

developing, 119

overview, 119

running, 122

transactional aspects, 124
Message-Oriented Middleware (MOM)

launching, 123
Messaging Service

overview, 8

migrating

New World Cruises application to JOnAS, 269

MimePartDataSource mail factory
configuring, 42

mod_jk
configuring, 237

MOM (Message-Oriented Middleware)
launching, 123

multi-protocol configuration, 24

N

newbean (command), 63

P

P6Spy
traces SQL requests, 53
tracing SQL requests, 278
Primary Key class
of Entity Beans, 79, 82

programmatic security management, 146



R

RAConfig (command), 68
registry (command), 65
registry (service), 26
configuring, 28
overview, 5
resource (Resource Adapter service), 26
configuring, 41
Resource Adapters
configuring, 275, 281
deploying with JOnAS, 193
RMIC
using to create IDL files, 265

S

security, 145

security (JOnAS service), 27

security (Security service)
configuring, 32

configuring Tomcat 5.0.x interceptors, 33

overview, 7
security context
propagation, 24
security roles, 145
service class
defining, 187
ServiceException, 191
ServiceManager, 191
services
introducing a new, 187
servlets
accessing an EJB from, 160
developing, 157
introduction, 158
Session Beans
component interface, 74
developing, 73
Enterprise Bean Class, 75
home interface, 73
session mail factory
configuring, 42
session replication

configuring Apache, Tomcat, and JOnAS for, 239

SQL requests
tracing through P6Spy, 53

Stateless Session Bean (SSB) endpoint, 219

stateless session bean pool
tuning, 77

T

Tomcat
configuring for a cluster, 238
trace.properties
syntax, 25
transaction context
propagation, 24
transactions
and JMS, 200

w

WAR packaging, 167

web (WEB Container), 27
configuring, 28

web applications
deployment and installation, 151, 153
running in a cluster, 241
running with load balancing, 239

WEB class loader, 56

web components
developing, 157

WEB Container Service
overview, 6

‘Web Deployment Descriptor
defining, 163

Web Services
client, 222
definitions, 217
J2EE component as, 219
overview, 217
with JOnAS, 217

WebLogic

web service interoperability with JOnAS, 257

using RMI-IIOP, 263
WebServices, 27
configuring, 29
overview, 10
WebSphere MQ
architectural rules, 253
limitations, 256
using, 253
ws (WebServices), 27
configuring, 29

287






