Guide d'utilisation

@RISK pour Six Sigma

Version 5.5 juin, 2009

Palisade Corporation 798 Cascadilla St. Ithaca, NY 14850 États-Unis +1-607-277-8000 +1-607-277-8001 (fax) http://www.palisade.com (site Web) sales@palisade.com (courriel)

Avis de copyright

Copyright © 2009, Palisade Corporation.

Marques déposées

Microsoft, Excel et Windows sont des marques déposées de Microsoft Corporation IBM est une marque déposée d'International Business Machines, Inc. Palisade, TopRank, BestFit et RISKview sont des marques déposées de Palisade

Palisade, TopRank, BestFit et RISKview sont des marques déposées de Palisade Corporation.

RISK est une marque commerciale de Parker Brothers, une division de Tonka Corporation, exploitée sous licence.

Bienvenue

Bienvenue à @RISK, l'outil d'analyse du risque le plus puissant au monde ! Dans tous les domaines, @RISK sert depuis longue date à analyser le risque et l'incertitude. Aussi souple qu'Excel même, @RISK trouve ses applications dans les secteurs des finances, du pétrole et du gaz, des assurances, de la production, des soins de santé, de la pharmaceutique, de la science et bien d'autres encore. Chaque jour, des dizaines de milliers de professionnels font confiance à @RISK pour estimer leurs coûts, analyser leur VAN et TRI, étudier leurs véritables options, déterminer leurs prix, explorer leurs ressources pétrolières et autres, et bien davantage encore.

Six Sigma et l'analyse de qualité représentent une application clé de @RISK. Qu'il s'agisse de l'approche DMAIC, DFSS, Lean, DOE ou autre, l'incertitude et la variabilité sont au cœur de l'analyse Six Sigma. @RISK recourt à la simulation Monte Carlo pour identifier, mesurer et éliminer les causes de variabilité dans vos processus de production et de service. Une série complète de mesures de capacité assure les calculs nécessaires à la réalisation rapide et précise des méthodes Six Sigma. Graphiques et tableaux illustrent clairement les statistiques Six Sigma, pour faciliter, en toute efficacité, la démonstration de cette puissante technique à l'encadrement. L'édition Industrial de @RISK ajoute RISKOptimizer aux analyses Six Sigma, rendant possible l'optimisation de la sélection de projet, de l'allocation de ressources, etc.

Des usines de fabrication de moteurs aux raffineries de métaux précieux et aux compagnies aériennes et producteurs de biens de consommation, @RISK améliore chaque jour les processus, la qualité des produits et services et les économies de coûts. Ce guide décrit les fonctions, statistiques, graphiques et rapports Six Sigma de @RISK, pour vous montrer l'utilité du programme à tous les niveaux d'un projet Six Sigma. Quelques études de cas sont également présentées en fin de guide. Vous y trouverez des modèles prédéfinis éventuellement adaptables à vos propres analyses. Les fonctionnalités standard de @RISK, telles que l'entrée de fonctions de distribution, l'ajustement de distributions aux données, l'exécution de simulations et la réalisation d'analyses de sensibilité, sont également applicables aux modèles Six Sigma. Il vous sera utile, pour la modélisation @RISK pour Six Sigma, de vous familiariser avec ces fonctionnalités. Elles sont décrites dans le Guide de l'utilisateur de @RISK pour Excel et dans les didacticiels en ligne.

Table des matières

Chapitre 1 : @RISK et les méthodologies Six Sigma 1
Introduction3
Méthodologies Six Sigma7
@RISK et Six Sigma11
Chapitre 2 : Utiliser @RISK pour Six Sigma 15
Introduction17
Fonction de propriété RiskSixSigma19
Fonctions statistiques Six Sigma23
Six Sigma et la fenêtre Synthèse des résultats35
Marqueurs graphiques Six Sigma
Études de cas 39
Exemple 1 – Conception d'expériences (DOE) : Catapulte 41
Exemple 2 – Conception d'expériences (DOE) : Soudage
Exemple 3 – Conception d'expériences (DOE) avec optimisation
Exemple 4 – DFSS : Circuit électrique59
Exemple 5 – Lean Six Sigma : Analyse de processus de devis
Exemple 6 – DMAIC : Analyse de rendement global combiné 71
Exemple 7 – Sélection de fournisseur75
Exemple 8 – Taux d'échec DMAIC Six Sigma79
Exemple 9 – Taux d'échec DMAIC Six Sigma avec RiskTheo 83

Chapitre 1 : @RISK et les méthodologies Six Sigma

Introduction	3
Qu'est-ce que Six Sigma ? L'importance de la variation	3 5
Méthodologies Six Sigma	7
Six Sigma / DMAIC DFSS (Design for Six Sigma – Conception pour Six Sigma) Lean ou Lean Six Sigma	7 8 9
@RISK et Six Sigma	11
@RISK et DMAIC @RISK et DFSS	11
@RISK et Lean Six Sigma	13

Introduction

Dans ce monde régi par la concurrence, la qualité est plus importante que jamais. Avec @RISK, le professionnel dispose du compagnon idéal pour ses analyses Six Sigma ou de qualité. Cette puissante solution permet l'analyse rapide de l'effet de la variation au sein des processus et des concepts.

Outre l'analyse Six Sigma et de qualité, @RISK peut servir à l'analyse de toute situation sujette à l'incertitude. @RISK trouve ses applications dans l'analyse de VAN, de TRI et d'options réelles, l'estimation des coûts, l'analyse de portefeuille, l'exploration de gaz et pétrole, les réserves d'assurance, la tarification, et bien davantage encore. Pour plus de détails sur les autres applications de @RISK et son utilisation en général, voir le Guide de l'utilisateur @RISK joint au logiciel.

Qu'est-ce que Six Sigma ?

Six Sigma est un ensemble de pratiques destinées à améliorer systématiquement les processus par **réduction de la variation** et, par conséquent, élimination des **défauts**. Une défaut se définit comme la **non-conformité d'un produit ou service à ses spécifications**. Si la formulation originale des détails de la méthodologie revient à la société Motorola vers le milieu des années 1980, Six Sigma s'inspire largement des efforts d'amélioration de la qualité des six décennies antérieures, déployés sous les appellations de contrôle de qualité, management par la qualité (TQM) et zéro défaut. Comme ces méthodologies précédentes, Six Sigma pose pour principes :

- Les efforts continus de réduction de la variation des sorties de processus sont essentiels au succès de l'entreprise.
- Les processus de fabrication et d'entreprise peuvent être mesurés, analysés, améliorés et contrôlés.
- L'amélioration durable de la qualité exige l'engagement de l'organisation tout entière, et en particulier de la haute direction.

Six Sigma est une question de données. Les variables « X » et « Y » sont souvent mentionnées. Les variables X sont tout simplement des variables en entrée indépendantes, qui affectent les variables de sortie dépendantes, Y. Six Sigma se concentre sur l'identification et le contrôle de la variation des variables X dans le but de maximiser la qualité et de minimiser la variation des variables Y.

L'expression Six Sigma, ou 6σ , est descriptive. La lettre grecque sigma (σ) désigne l'écart type, importante mesure de variation. La variation d'un processus fait référence au degré de concentration de tous les résultats autour de la moyenne. La probabilité de susciter un défaut peut être estimée et traduite en « niveau Sigma ». Plus le niveau Sigma est élevé, plus la performance est bonne. **Six Sigma fait référence à l'existence de six écarts types entre la moyenne du centre de processus et la limite de spécification ou niveau de service le plus proche**. Cela veut dire moins de 3,4 défauts par million d'opportunités (DPMO). Le graphique ci-dessous illustre le concept Six Sigma.

Six sigma – ou écarts types – de la moyenne.

Les économies de coûts et les améliorations de qualité réalisées grâce aux applications de Six Sigma en entreprise sont considérables. Motorala a fait état de 17 milliards de dollars d'économies depuis sa mise en œuvre vers le milieu des années 1980. Lockheed Martin, GE, Honeywell et bien d'autres entreprises ont également récolté les fruits de Six Sigma.

L'importance de la variation

Trop d'analystes Six Sigma travaillent sur des modèles statiques qui ne tiennent pas compte de l'incertitude et de la variabilité inhérentes à leurs processus ou concepts. Dans la quête d'une qualité maximale, il est essentiel d'envisager autant de scénarios que possible.

@RISK répond à cette nécessité : à travers la simulation Monte Carlo et l'analyse de milliers d'issues différentes possibles, il indique la probabilité de réalisation de chacune. Les facteurs incertains se définissent à l'aide de plus de 35 fonctions de distribution de probabilités, lesquelles décrivent avec précision la plage possible des valeurs en entrée. Mieux encore, @RISK permet la définition des valeurs de limite de spécification supérieure, limite de spécification inférieure et cible de chaque sortie. Il propose en outre de nombreuses statistiques Six Sigma et mesures de capacité.

Avec RISKOptimizer, l'édition @RISK Industrial combine la puissance de la simulation Monte Carlo à l'optimisation par algorithmes génétiques, pour la résolution de problèmes d'optimisation sujets à une incertitude inhérente, tels que :

- allocation de ressources en vue de minimiser les coûts
- sélection de projet en vue de maximiser les profits
- optimisation des paramètres de processus en vue de maximiser le rendement ou de minimiser les coûts
- optimisation de l'allocation de tolérance en vue de maximiser la qualité
- optimisation des programmes de personnel en vue de maximiser le service

Méthodologies Six Sigma

@RISK peut être utile à différents types d'analyses Six Sigma et autres. Les trois principaux niveaux d'analyse sont :

- Six Sigma / DMAIC / DOE
- DFSS (Design for Six Sigma Conception pour Six Sigma)
- Lean ou Lean Six Sigma

Six Sigma / DMAIC

La mention de Six Sigma fait généralement référence à la méthodologie DMAIC. Cette méthodologie est utile lorsqu'un produit ou un processus existe déjà mais qu'il ne répond pas aux spécifications client ou n'atteint pas une performance adéquate.

DMAIC se concentre sur l'amélioration évolutive et continue des processus de fabrication et de services. Elle se définit presque universellement selon les cinq phases suivantes : **Définir, Mesurer, Analyser, Améliorer et Contrôler.**

- 1) **Définir** les objectifs du projet et les exigences du client (VOC, voix du client interne et externe).
- 2) **Mesurer** le processus afin d'en déterminer la performance actuelle.
- 3) **Analyser** et déterminer la ou les causes profondes des défauts.
- 4) **Améliorer** le processus par élimination de ces causes profondes.
- 5) **Contrôler** la performance future du processus.

DFSS (Design for Six Sigma – Conception pour Six Sigma)

La méthodologie DFSS sert à la conception ou re-conception totale d'un produit ou service. Le niveau Sigma de processus attendu pour un produit ou service DFSS est d'au moins 4,5 (soit pas plus d'environ 1 défaut par milliers d'opportunités), mais peut atteindre 6 Sigma ou même mieux suivant le produit. L'assurance d'un tel niveau de faible défectuosité lors du lancement d'un produit ou service implique que les attentes et les besoins du client (CTQ) doivent être bien compris avant la réalisation et mise en œuvre d'une conception. Les programmes DFSS réussis peuvent réduire les gaspillages inutiles au niveau de la planification et introduire plus rapidement les produits sur le marché.

Contrairement à la méthodologie DMAIC, les phases ou étapes de DFSS ne sont pas universellement reconnues ou même définies : chaque entreprise ou organisation de formation les définit à sa manière. L'une des méthodologies DFSS relativement connue est identifiée par l'acronyme **DMADV**. Elle conserve le même nombre de lettres et de phases, ainsi qu'une approche générale proche de celle de DMAIC. Les cinq phases de la méthodologie DMADV se définissent comme suit : **Définir, Mesurer, Analyser, Concevoir et Vérifier**.

- 1) **Définir** les objectifs du projet et les exigences du client (VOC interne et externe).
- 2) **Mesurer** et déterminer les besoins et spécifications du client ; mesurer aussi la concurrence et l'industrie.
- 3) **Analyser** les options de processus pour répondre aux besoins du client.
- 4) **Concevoir** (en détail) le processus pour répondre aux besoins du client.
- 5) **Vérifier** la performance de la conception et son aptitude à satisfaire aux besoins du client.

Lean ou Lean Six Sigma

« Lean Six Sigma » combine la production « Lean » (au plus juste, développée par Toyota) et les méthodologies statistiques Six Sigma en un outil synergique. **« Lean » concerne l'accélération d'un processus par réduction des déchets et gaspillages et élimination des étapes sans valeur ajoutée.** Lean se concentre sur une stratégie d'attraction (« pull ») du client, avec production des seuls produits demandés sous livraison « juste à temps ». Six Sigma améliore la performance en concentrant l'attention sur les aspects du processus qui sont critiques à la qualité dans la perspective du client et en éliminant la variation au niveau de ce processus. De nombreuses organisations de services, notamment, ont d'ores et déjà commencé à combiner la qualité supérieure de Six Sigma à l'efficacité de l'approche Lean dans la méthodologie Lean Six Sigma.

Lean utilise les « événements Kaizen » -- sessions d'amélioration intensives, sur une durée d'une semaine généralement – pour identifier rapidement les occasions d'amélioration, portant plus avant la cartographie de la chaîne de valeur. Six Sigma fait appel à la méthodologie DMAIC formelle pour assurer des résultats mesurables et reproductibles.

Lean et Six Sigma reposent tous deux sur le principe que les entreprises sont faites de processus qui commencent par les besoins du client et doivent aboutir sur des clients satisfaits de leur produit ou service.

@RISK et Six Sigma

Qu'il s'agisse de DMAIC, DFSS, DOE ou de Lean Six Sigma, l'incertitude et la variabilité sont au cœur de l'analyse Six Sigma. @RISK recourt à la simulation Monte Carlo pour identifier, mesurer et éliminer les causes de variabilité dans vos processus de production et de service. Chaque méthodologie Six Sigma peut profiter de l'approche @RISK à tous les niveaux de l'analyse.

@RISK et DMAIC

@RISK est utile à chaque étape du processus DMAIC : il permet de tenir compte de la variation et de cerner les zones problèmes de produits existants.

- Définir. On définit les objectifs d'amélioration du processus, par incorporation de la demande du client et de la stratégie d'entreprise. La cartographie de la chaîne de valeur, l'estimation des coûts et l'identification des attentes du client (CTQ) représentent autant d'aspects où @RISK peut aider à mieux concentrer l'analyse et fixer les objectifs. L'analyse de sensibilité @RISK identifie clairement les CTQ qui affectent l'ultime profitabilité.
- 2) Mesurer. On mesure les niveaux de performance actuels et leurs variations. L'ajustement de distribution et plus de 35 distributions de probabilités précisent la définition des variations de performance. Les statistiques des simulations @RISK apportent des données comparatives par rapport aux critères de la phase d'analyse.
- 3) Analyser. On analyse pour vérifier la causalité des défauts et on essaie de tenir compte de tous les facteurs. La simulation @RISK assure la prise en compte de tous les facteurs en entrée et la présentation de toutes les issues possibles. L'analyse de sensibilité et de scénario permet d'identifier clairement les causes de la variabilité et du risque, avec analyse aussi des tolérances. Les fonctions statistiques Six Sigma de @RISK calculent les mesures de capacité aptes à identifier les écarts entre les mesures et les exigences. On voit apparaître ici la fréquence des défauts des produits et processus et on se fait une idée de la fiabilité.

- 4) Améliorer. On améliore ou on optimise le processus, en fonction de l'analyse, selon des techniques telles que DOE. DOE, ou conception d'expériences, inclut la conception de tous les exercices de collecte d'information en présence de variation, sous le contrôle de l'expérimentateur ou non. Grâce à la simulation @RISK, différents concepts et changements de processus peuvent être testés. @RISK est aussi utile à l'analyse de fiabilité et – avec RISKOptimizer – à l'optimisation des ressources.
- 5) **Contrôler. On contrôle pour assurer la correction des variances avant qu'elles ne donnent lieu à des défauts.** À la phase de contrôle, on peut organiser des essais pilotes pour établir la capacité du processus, assurer la transition vers la production puis mesurer en permanence le processus et instaurer les mécanismes de contrôle. @RISK calcule automatiquement la capacité du processus et valide les modèles pour assurer la satisfaction des normes de qualité et des exigences du client.

@RISK et DFSS

@RISK est particulièrement utile à la méthodologie Six Sigma DFSS au niveau de l'étape de planification d'un nouveau projet. L'essai de différents processus sur des modèles ou prototypes de production ou service réels peut être excessivement onéreux. @RISK permet aux ingénieurs de simuler des milliers d'issues différentes sur leurs modèles, sans avoir à encourir le coût ni la durée d'une simulation physique. Comme pour DMAIC, @RISK est utile à chaque étape de la méthodologie DFSS. Les ingénieurs y gagnent les avantages suivants :

- Expérimentation de conceptions différentes / DOE
- Identification des attentes du client (CTQ)
- Prédiction de capacité de processus
- Révélation des contraintes de conception du produit
- Estimation des coûts
- Sélection de projet à l'aide de RISKOptimizer pour identifier le portefeuille optimal
- Analyse de tolérance statistique
- Allocation de ressources à l'aide de RISKOptimizer pour maximiser l'efficacité

@RISK et Lean Six Sigma

@RISK est le compagnon idéal de la synergie Lean Six Sigma. Les modèles Six Sigma limités à la qualité peuvent échouer lors de leur application à la réduction de la variation en une simple étape de processus, ou à des processus dénués de valeur ajoutée pour le client. Par exemple, une analyse Six Sigma pourrait recommander l'ajout d'un contrôle durant le processus de fabrication pour repérer et éliminer les unités défectueuses. Le gaspillage représenté par le traitement des unités défectueuses est peut-être éliminé, mais au prix de l'ajout d'un contrôle, représentant une nouvelle perte en soi. Dans l'analyse Lean Six Sigma, @RISK identifie les causes des défauts. Mieux encore, @RISK peut représenter l'incertitude dans les mesures de qualité (ppm) et de vitesse (temps de cycle).

@RISK apporte les avantages suivants à l'analyse Lean Six Sigma :

- Sélection de projet à l'aide de RISKOptimizer pour identifier le portefeuille optimal
- Cartographie de la chaîne de valeur
- Identification des CTQ responsables de la variation
- Optimisation de processus
- Découverte et réduction des étapes de processus inutiles
- Optimisation des stocks à l'aide de RISKOptimizer pour minimiser les coûts
- Allocation de ressources à l'aide de RISKOptimizer pour maximiser l'efficacité

Chapitre 2 : Utiliser @RISK pour Six Sigma

Introduction	17
Fonction de propriété RiskSixSigma	19
Entrée d'une fonction de propriété RiskSixSigma	
Fonctions statistiques Six Sigma	23
RiskCp	
RiskCom	
RiskCpk	
RiskCpkLower	
RiskCpkUpper	
RiskDPM	
RiskK	
RiskLowerXBound	
RiskPNC	
RiskPNCLower	
RiskPNCUpper	
RiskPPMLower	
RiskPPMUpper	
RiskSigmalLevel	
RiskUpperXBound	
RiskYV	
RiskZlower	
RiskZMin	
RiskZUpper	
Six Sigma et la fenêtre Synthèse des résultats	
Marqueurs graphiques Six Sigma	37

Introduction

Les capacités de simulation standard de @RISK ont été améliorées en vue de leur application à la modélisation Six Sigma, moyennant l'ajout de quatre fonctionnalités importantes :

- 1) la fonction de propriété **RiskSixSigma**, pour l'entrée de limites de spécification et des valeurs cibles des sorties de simulation,
- 2) les **fonctions statistiques Six Sigma**, y compris les indices de capacité de processus tels que RiskCpk, RiskCpm et d'autres, qui renvoient leurs statistiques Six Sigma relatives aux résultats de simulation directement dans les cellules du tableur,
- de nouvelles colonnes dans la fenêtre Synthèse des résultats, pour présenter les statistiques Six Sigma relatives aux résultats de simulation sous forme de tableau,
- 4) des **marqueurs** sur les graphiques de résultats de simulation, pour indiquer les limites de spécification et la valeur cible.

Les fonctionnalités standard de @RISK, telles que l'entrée de fonctions de distribution, l'ajustement de distributions aux données, l'exécution de simulations et la réalisation d'analyses de sensibilité, sont également applicables aux modèles Six Sigma. Il vous sera utile, pour la modélisation @RISK pour Six Sigma, de vous familiariser avec ces fonctionnalités. Elles sont décrites dans le Guide de l'utilisateur de @RISK pour Excel et dans les didacticiels en ligne.

Fonction de propriété RiskSixSigma

Dans une simulation @RISK, la fonction **RiskOutput** identifie une cellule de tableur comme sortie de simulation. Une distribution des issues possibles est générée pour chaque cellule de sortie sélectionnée. Ces distributions de probabilités se créent moyennant la collecte des valeurs calculées pour la cellule à chaque itération d'une simulation.

Lorsque les statistiques Six Sigma doivent être calculées pour une sortie, la fonction de propriété **RiskSixSigma** s'introduit sous forme d'argument de la fonction RiskOutput. Elle spécifie la limite de spécification inférieure, la limite de spécification supérieure, la valeur cible, le décalage à long terme et le nombre d'écarts types à considérer dans les calculs six sigma d'une sortie. Ces valeurs servent au calcul des statistiques six sigma affichées dans la fenêtre des résultats et sur les graphiques de la sortie. Par exemple :

RiskOutput("Hauteur de pièce";;RiskSixSigma(0,88;0,95;0,915,1,5;6))

spécifie une LSI de 0,88, une LSS de 0,95, une valeur cible de 0,915, un décalage à long terme de 1,5 et un nombre d'écarts types de 6 pour la sortie Hauteur de pièce. Vous pouvez aussi procéder par référence aux cellules dans la fonction de propriété RiskSixSigma.

Ces valeurs servent au calcul des statistiques Six Sigma affichées dans la fenêtre des résultats et comme marqueurs sur les graphiques de la sortie.

En présence d'une fonction de propriété RiskSixSigma dans une sortie, @RISK affiche automatiquement les statistiques Six Sigma relatives aux résultats de simulation de la sortie dans la fenêtre Synthèse des résultats et ajoute les marqueurs correspondant aux valeurs LSI, LSS et Cible entrées aux graphiques des résultats de simulation de la sortie.

Entrée d'une fonction de propriété RiskSixSigma

La fonction de propriété RiskSixSigma peut être tapée directement dans la formule d'une cellule, comme argument d'une fonction RiskOutput. L'**Assistant Fonction d'Excel** peut aussi servir à l'entrée directe d'une fonction dans la formule d'une cellule.

La **commande Insérer une fonction** de @RISK permet d'insérer rapidement une fonction RiskOutput assortie d'une fonction de propriété RiskSixSigma. À partir du menu Insérer une fonction de @RISK, il suffit de choisir la commande **RiskOutput (Format Six Sigma)** du menu **Sortie** pour que la fonction appropriée s'ajoute à la formule de la cellule active.

Propriétés de sortie – Onglet Six Sigma La fenêtre @RISK Propriétés de la fonction permet aussi l'entrée d'une fonction de propriété RiskSixSigma dans une fonction RiskOutput. Les arguments de la fonction RiskSixSigma se spécifient sous l'onglet Six Sigma de cette fenêtre. Pour accéder à la fenêtre Propriétés de la fonction RiskOutput, cliquez sur le bouton Propriétés de la fenêtre @RISK Ajouter une sortie.

Propriétés de sortie: C8	2		X
Options Convergence	Six Sigma		
☑ Calculer les mesure Limites de spécification	s de capacité de	e cette sortie	
LSL	85		
USL	125		
Cible	105		
Autre			
🔲 Uțiliser le décalaç	je long terme		
Décalage	1,5		
Limite X supérieure/in	férieure		
<u>E</u> carts types	1		
0		ок	Annuler

Les paramètres par défaut d'une sortie à utiliser dans les calculs Six Sigma se configurent sous l'onglet Six Sigma. Les propriétés concernées sont les suivantes :

- Calculer les mesures de capacité de cette sortie. Spécifie l'affichage des mesures de capacité dans les rapports et graphiques relatifs à la sortie. Ces mesures reposent sur les valeurs LSI, LSS et Cible entrées.
- LSI, LSS et Cible. Définit les valeurs LSI (limite de spécification inférieure), LSS (limite de spécification supérieure) et Cible de la sortie.
- Utiliser le décalage long terme et Décalage. Spécifient un décalage facultatif pour le calcul des mesures de capacité à long terme.
- Limite X supérieure/inférieure. Nombre d'écarts types, à droite ou à gauche de la moyenne, pour le calcul des valeurs X supérieure et inférieure.

Les paramètres Six Sigma définis s'inscrivent dans une fonction de propriété **RiskSixSigma** ajoutée à la fonction RiskOutput. Seules les sorties dotées de la fonction de propriété RiskSixSigma affichent les marqueurs et statistiques Six Sigma dans les graphiques et rapports. Les fonctions statistiques Six Sigma @RISK des feuilles de calcul Excel peuvent faire référence à n'importe quelle cellule de sortie porteuse d'une fonction de propriété RiskSixSigma.

Remarque : Tous les graphiques et rapports @RISK utilisent les valeurs LSI, LSS, Cible, Décalage à long terme et Nombre d'écarts types des fonctions de propriété RiskSixSigma en place au moment du démarrage d'une simulation. Si vous changez les limites de spécification d'une sortie (et sa fonction de propriété RiskSixSigma associée), veillez à réexécuter la simulation pour en afficher l'effet sur les graphiques et rapports.

Fonctions statistiques Six Sigma

Un ensemble de fonctions statistiques @RISK renvoie la **statistique Six Sigma** désirée sur une sortie de la simulation. Par exemple, la fonction *RiskCPK(A10)* renvoie la valeur CPK de la sortie de simulation de la cellule A10. Ces fonctions s'actualisent en temps réel, en cours d'exécution de la simulation. Elles sont similaires aux fonctions statistiques @RISK standard (telles que RiskMean) en ce qu'elles calculent les statistiques relatives aux résultats de simulation. La différence est qu'elles calculent les statistiques généralement requises dans les modèles Six Sigma. Ces fonctions sont universellement admises dans les cellules de tableur et les formules du modèle.

Remarques importantes concernant les fonctions statistiques Six Sigma de @RISK :

- Si une référence de cellule est précisée comme premier argument de la fonction statistique et que la cellule contient une fonction RiskOutput assortie d'une fonction de propriété RiskSixSigma, @RISK utilise les valeurs LSI, LSS, Cible, Décalage à long terme et Nombre d'écarts types de cette sortie lors du calcul de la statistique désirée.
- Si une référence de cellule est spécifiée comme premier argument, la cellule <u>ne doit pas</u> nécessairement être une sortie de simulation identifiée par une fonction RiskOutput. Toutefois, s'il ne s'agit pas d'une sortie, **une fonction de propriété RiskSixSigma facultative doit être ajoutée à la fonction statistique en soi** pour que @RISK dispose des paramètres nécessaires au calcul de la statistique désirée.
- Lorsqu'une fonction de propriété RiskSixSigma facultative est entrée directement dans une fonction statistique, @RISK ignore les paramètres Six Sigma spécifiés dans la fonction de propriété RiskSixSigma d'une sortie de simulation référencée, ce qui permet de calculer les statistiques Six Sigma à différentes valeurs LSI, LSS, Cible, Décalage long terme et Nombre d'écarts types pour une même sortie.
- Si un **nom particulier est entré au lieu d'une référence de cellule**, @RISK commence par rechercher une sortie désignée par ce nom, avant d'en lire les paramètres de fonction de propriété RiskSixSigma. Il incombe à l'utilisateur d'assurer la désignation sous un nom unique des sorties référencées dans les fonctions statistiques.

- L'argument « **n**° **sim** » sélectionne la simulation pour laquelle la statistique est renvoyée lors de l'exécution de simulations multiples. Cet argument est facultatif. Il peut être omis pour les exécutions à simulation unique.
- Quand une fonction de propriété RiskSixSigma facultative est introduite directement dans une fonction statistique Six Sigma, différents arguments sont utilisés suivant le calcul effectué.
- Les fonctions statistiques définies dans les masques de rapports de résultats personnalisés ne s'actualisent qu'en fin de simulation.

Entrée de fonctions statistiques Six Sigma La commande **Insérer une fonction** de @RISK permet d'insérer rapidement une fonction statistique Six Sigma. Sélectionnez simplement la commande **Six Sigma**, dans la catégorie **Fonctions statistiques** du menu Insérer une fonction de @RISK, puis sélectionnez la fonction désirée. La fonction sélectionnée s'ajoute à la formule de la cellule active.

RiskCp

Description	RiskCp (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma</i> (<i>LSI; LSS; Cible; Décalage</i> <i>long terme; Nombre d'écarts types</i>)) calcule la capacité de processus pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement, des LSI et LSS de la fonction de propriété RiskSixSigma incluse. Cette fonction calcule le niveau de qualité de la sortie spécifiée et ce qu'elle est potentiellement capable de produire.
Exemples	RiskCP(A10) renvoie la capacité de processus de la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskCP(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie la capacité de processus de la cellule de sortie A10, en fonction d'une LSI de 100 et d'une LSS de 120.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskCpm

Description	RiskCpm (<i>réf_cell</i> ou <i>nom sortie; n</i> ° <i>sim; RiskSixSigma</i> (<i>LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types</i>)) renvoie l'indice de capacité Taguchi pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n</i> ° <i>sim,</i> en fonction, facultativement, des LSI, LSS et Cible de la fonction de propriété RiskSixSigma. Cette fonction est essentiellement identique à Cpk, si ce n'est qu'elle incorpore la valeur cible, parfois extérieure aux limites de spécifications.
Exemples	RiskCpm(A10) renvoie l'indice de capacité Taguchi pour la cellule A10.
	RiskCpm(A10; ;RiskSixSigma(100;120;110;0;6)) renvoie l'indice de capacité Taguchi de la cellule de sortie A10, en fonction d'une LSS de 120, d'une LSI de 100 et d'une Cible de 110.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskCpk

Description	RiskCpk (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)</i>) calcule l'indice de capacité de processus pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement, des LSI et LSS de la fonction de propriété RiskSixSigma incluse. Cette fonction est similaire à la fonction Cp, si ce n'est qu'elle prend en considération un ajustement de la Cp pour tenir compte de l'effet d'une distribution décentrée. Comme formule, Cpk = la plus petite des valeurs (LLS-Moyenne) / (3 x sigma) ou (Moyenne-LSI) / (3 x sigma).
Exemples	 RiskCpk(A10) renvoie l'indice de capacité de processus de la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10. RiskCpk(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie l'indice de capacité de processus de la cellule de sortie A10, en fonction d'une LSI de 100 et d'une LSS de 120
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskCpkLower

Description	RiskCpkLower (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) calcule l'indice de capacité unilatéral en fonction de la limite de spécification inférieure de <i>réf_cell</i> ou <i>nom</i> <i>sortie</i> à la simulation <i>n</i> ° <i>sim</i> , en fonction, facultativement de la LSI spécifiée dans la fonction de propriété RiskSixSigma.
Exemples	RiskCpkLower(A10) renvoie l'indice de capacité unilatéral basé sur la limite de spécification inférieure de la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10. RiskCpkLower(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie l'indice de capacité unilatéral de la cellule de sortie A10, en fonction d'une LSI de 100.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskCpkUpper

Description	RiskCpkUpper (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types</i>)) calcule l'indice de capacité unilatéral en fonction de la limite de spécification supérieure de <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement de la LSS spécifiée dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskCpkUpper(A10) renvoie l'indice de capacité unilatéral basé sur la limite de spécification supérieure de la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskCpkUpper(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie l'indice de capacité unilatéral de la cellule de sortie A10, en fonction d'une LSS de 100.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskDPM

Description	RiskDPM (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) calcule les parties par million défectueuses pour <i>réf_cell</i> ou <i>nom</i> sortie à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSI et LSS de la fonction de propriété RiskSixSigma incluse.
Exemples	RiskDPM(A10) renvoie les parties par million défectueuses pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskDPM(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie les parties par million défectueuses pour la cellule de sortie A10, en fonction d'une LSI de 100 et d'une LSS de 120.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskK

Description	RiskK (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types</i>)) calcule une mesure de centre de processus pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement, des LSI et LSS de la fonction de propriété RiskSixSigma incluse.
Exemples	RiskK(A10) renvoie une mesure de centre de processus pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskK(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie une mesure de centre de processus pour la cellule de sortie A10, en fonction d'une LSI de 100 et d'une LSS de 120.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskLowerXBound

Description	RiskLowerXBound (réf_cell ou nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) renvoie la valeur X inférieure d'un nombre spécifié d'écarts type par rapport à la moyenne pour réf_cell ou nom sortie à la simulation n° sim, en fonction, facultativement, du nombre d'écarts types spécifié dans la fonction de propriété RiskSixSigma.
Exemples	 RiskLowerXBound(A10) renvoie la valeur X inférieure d'un nombre d'écarts types spécifié par rapport à la moyenne pour la cellule A10. RiskLowerXBound(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie la valeur X inférieure de –6 écarts types par rapport à la moyenne pour la cellule de sortie A10, en fonction d'un nombre d'écarts types égal à 6.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour <i>réf_cell</i> ou <i>nom</i> sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskPNC

Description	RiskPNC (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) calcule la probabilité totale de défectuosité en dehors des limites de spécifications inférieure et supérieure pour <i>réf_cell</i> ou <i>nom</i> sortie à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSI, LSS et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskPNC(A10) renvoie la probabilité de défectuosité en dehors des limites de spécification inférieure et supérieure pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskPNC(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie la probabilité de défectuosité en dehors des limites de spécification inférieure et supérieure pour la cellule de sortie A10, en fonction d'une LSI de 100, d'une LSS de 120 et d'un décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskPNCLower

Description	RiskPNCLower (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; <i>RiskSixSigma</i> (<i>LSI</i> ; <i>LSS</i> ; <i>Cible</i> ; <i>Décalage long terme</i> ; <i>Nombre d'écarts types</i>)) calcule la probabilité de défectuosité en dehors de la limite de spécification inférieure pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSI, LSS et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskPNCLower (A10) renvoie la probabilité de défectuosité en dehors de la limite de spécification inférieure pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskPNCLower(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie la probabilité de défectuosité en dehors de la limite de spécification inférieure pour la cellule de sortie A10, en fonction d'une LSI de 100, d'une LSS de 120 et d'un décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskPNCUpper

Description	RiskPNCUpper (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; <i>RiskSixSigma</i> (<i>LSI</i> ; <i>LSS</i> ; <i>Cible</i> ; <i>Décalage long terme</i> ; <i>Nombre d'écarts types</i>)) calcule la probabilité de défectuosité en dehors de la limite de spécification supérieure pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n</i> ° <i>sim</i> , en fonction, facultativement, des LSI, LSS et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskPNCUpper(A10) renvoie la probabilité de défectuosité en dehors de la limite de spécification supérieure pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskPNCUpper(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie la probabilité de défectuosité en dehors de la limite de spécification supérieure pour la cellule de sortie A10, en fonction d'une LSI de 100, d'une LSS de 120 et d'un décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskPPMLower

Description	RiskPPMLower (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) calcule le nombre de défauts en- deçà de la limite de spécification inférieure pour <i>réf_cell</i> ou <i>nom</i> sortie à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSI et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskPPMLower(A10) renvoie le nombre de défauts en-deçà de la limite de spécification inférieure pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskPPMLower(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le nombre de défauts en-deçà de la limite de spécification inférieure pour la cellule de sortie A10, en fonction d'une LSI de 100 et d'un décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.
RiskPPMUpper

Description	RiskPPMUpper (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) calcule le nombre de défauts au- delà de la limite de spécification supérieure pour <i>réf_cell</i> ou <i>nom</i> sortie à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSS et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskPPMUpper(A10) renvoie le nombre de défauts au-delà de la limite de spécification supérieure pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskPPMUpper(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le nombre de défauts au-delà de la limite de spécification supérieure pour la cellule de sortie A10, en fonction d'une LSS de 120 et d'un décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskSigmalLevel

Description	RiskSigmaLevel (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) calcule le niveau Sigma de processus pour <i>réf_cell</i> ou <i>nom</i> sortie à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSS, LSI et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse. (Remarque : Cette fonction présume que la sortie est distribuée normalement et centrée dans les limites de spécification.)
Exemples	RiskSigmaLevel(A10) renvoie le niveau Sigma de processus de la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskSigmaLevel(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le niveau Sigma de processus pour la cellule de sortie A10, en fonction d'une LSS de 120, d'une LSI de 100 et d'une Décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskUpperXBound

Description	RiskUpperXBound (réf_cell ou nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types)) renvoie la valeur X supérieure d'un nombre spécifié d'écarts type par rapport à la moyenne pour réf_cell ou nom sortie à la simulation n° sim, en fonction, facultativement, du nombre d'écarts types spécifié dans la fonction de propriété RiskSixSigma.
Exemples	RiskUpperXBound (A10) renvoie la valeur X supérieure d'un nombre d'écarts types spécifié par rapport à la moyenne pour la cellule A10.
	RiskUpperXBound(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie la valeur X supérieure de -6 écarts types par rapport à la moyenne pour la cellule de sortie A10, en fonction d'un nombre d'écarts types égal à 6.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskYV

Description	RiskYV (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types</i>)) calcule le produit ou le pourcentage du processus sans défaut pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement, des LSI, LSS et Décalage long terme spécifiés dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskYV(A10) renvoie le produit ou le pourcentage du processus sans défaut pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskYV(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le produit ou le pourcentage du processus sans défaut pour la cellule de sortie A10, en fonction d'une LSI de 100, d'une LSS de 120 et d'un décalage long terme de 1,5.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskZlower

Description	RiskZlower (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types</i>)) calcule le nombre d'écarts types qui séparent la limite de spécification inférieure de la moyenne pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement, de la LSI spécifiée dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskZlower(A10) renvoie le nombre d'écarts types qui séparent la limite de spécification inférieure de la moyenne pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskZlower(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le nombre d'écarts types qui séparent la limite de spécification inférieure de la moyenne pour la cellule de sortie A10, en fonction d'une LSI de 100.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskZMin

Description	RiskZMin (<i>réf_cell</i> ou <i>nom</i> sortie; <i>n</i> ° sim; <i>RiskSixSigma</i> (<i>LSI</i> ; <i>LSS</i> ; <i>Cible</i> ; <i>Décalage long terme</i> ; <i>Nombre d'écarts types</i>)) calcule le minimum Z-inf et Z- sup pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n</i> ° sim, en fonction, facultativement, des LSS et LSI spécifiées dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskZMin(A10) renvoie le minimum Z-inf et Z-sup pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskZMin(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le minimum Z-inf et Z-sup pour la cellule de sortie A10, en fonction d'une LSS de 120 et d'une LSI de 100.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

RiskZUpper

Description	RiskZUpper (<i>réf_cell</i> ou <i>nom sortie; n° sim; RiskSixSigma(LSI; LSS; Cible; Décalage long terme; Nombre d'écarts types</i>)) calcule le nombre d'écarts types qui séparent la limite de spécification supérieure de la moyenne pour <i>réf_cell</i> ou <i>nom sortie</i> à la simulation <i>n° sim,</i> en fonction, facultativement, de la LSS spécifiée dans la fonction de propriété RiskSixSigma incluse.
Exemples	RiskZUpper(A10) renvoie le nombre d'écarts types qui séparent la limite de spécification supérieure de la moyenne pour la cellule de sortie A10. Une fonction de propriété RiskSixSigma doit être entrée dans la fonction RiskOutput de la cellule A10.
	RiskZUpper(A10; ;RiskSixSigma(100;120;110;1,5;6)) renvoie le nombre d'écarts types qui séparent la limite de spécification supérieure de la moyenne pour la cellule de sortie A10, en fonction d'une LSS de 120.
Directives	Une fonction de propriété RiskSixSigma doit être entrée pour réf_cell ou nom sortie, ou une fonction de propriété RiskSixSigma doit être incluse.

Six Sigma et la fenêtre Synthèse des résultats

La fenêtre **@RISK – Synthèse des résultats** affiche la synthèse des résultats du modèle ainsi que des vignettes graphiques et statistiques de synthèse des cellules de sortie simulées et des distributions en entrée.

En présence d'une fonction de propriété **RiskSixSigma** dans une sortie, @RISK affiche automatiquement dans le tableau les statistiques Six Sigma disponibles sur les résultats de simulation relatifs à la sortie. Ces colonnes peuvent être masquées ou affichées à loisir.

©RISK - Synthèse des résultats								
Entrées Sorties								
Résultats de simulation pour les sorties :				Entrées=	8; Sorties= 1; Itéra	tions= 1000; Temps	d'exécution= 00:00:	03
om	Cell	Graphique	Min	Moyenne	Max	Cpk	CpkUpper	
		⁸⁰	81,71055					

Personnalisation des statistiques affichées Les colonnes de la fenêtre Synthèse des résultats peuvent être personnalisées en fonction des statistiques à afficher. L'icône Colonnes, au bas de la fenêtre, ouvre la boîte de dialogue **Sélectionner les colonnes du tableau**.

di s	électionner les	colonnes du tableau: Synthèse des résultats	×
	Nom de la colonne	Description	
	Graphique	Graphique d'entrée/sortie	
	Min	Valeur minimum possible de la distribution	
	Moyenne	Valeur moyenne	
	Max	Valeur maximum possible	
	Cpk	Capacité de processus	
	CpkUpper	Capacité de processus - Spéc sup	
	CpkLower	Capacité de processus - Spéc inf	
	Ср	Potentiel de processus	
	Zupper	Cote Z de limite supérieure	
	Zlower	Cote Z de limite inférieure	
	DPM	DPPM	
	Niveau Sigma	Niveau Sigma de processus	
	PNC	Total % non conforme	
	PNC Supérieur	% non conforme au-delà de la limite sunérieure	-
0			ıler

Si vous choisissez d'inclure les valeurs de centile dans le tableau, le centile effectif s'inscrit sur les lignes **Valeur au centile entré**.

	Nom de la colonne	Description	
	Mode	Mode ou valeur la plus probable	
	Ecart type	Ecart type de la distribution	
	Yariance	Variance de distribution	
	Asymétrie	Asymétrie de la distribution	
	Aplatissement	Aplatissement de la distribution	
₽	1%	Valeur au centile entré	
$\mathbf{\overline{v}}$	99%	Valeur au centile entré	
	p1,x1	Valeurs p1,×1 modifiables	
	p2,x2	Valeurs p1,×2 modifiables	
	x2-x1	Différence entre les valeurs x2 et x1	
	p2-p1	Différence entre les valeurs p2 et p1	
	Erreurs	Nombre d'erreurs pour entrée/sortie	
	Filtrées	Nombre de valeurs filtrées pour entrée/sortie	_

Génération d'un rapport Excel

La fenêtre Synthèse des résultats peut être exportée vers Excel, sous forme de rapport contenant les statistiques affichées et les graphiques. Pour obtenir ce rapport, cliquez sur l'icône **Modifier et Exporter** au bas de la fenêtre et sélectionnez **Rapports Excel**.

Arrows Develope Name or page Families Develope Reason Affinities Develope Reason Reason Affinities Develope Reason Reason <th< th=""><th>Answell Buncher Danners Denners Denners Billions Denners Billions Denners Denners<th>1.1.1</th><th>Phillips .</th><th></th><th></th><th></th><th></th><th>Cla</th><th>Iseur3 - Micr</th><th>osoft Excel</th><th></th><th></th><th></th><th></th><th></th><th>-</th></th></th<>	Answell Buncher Danners Denners Denners Billions Denners Billions Denners Denners <th>1.1.1</th> <th>Phillips .</th> <th></th> <th></th> <th></th> <th></th> <th>Cla</th> <th>Iseur3 - Micr</th> <th>osoft Excel</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>	1.1.1	Phillips .					Cla	Iseur3 - Micr	osoft Excel						-
All C D E F G H J K Resultances unside services BL F G H J K Resultances unside services BL F G H J K Image: Service	All Auditer	Accueil	Insertion	Mise en page	Formules	Données	Rem	ion Attic	sage @RIS	κ.						9 -
A1 A	A1 • C D E P G H I J K Method law contraction C D E P G H I J K Method law contraction Met	Affirster tes Ajo conductions une	fx uter Inserer une sortie Tonction *	Définir les corrélations Modèle	Ajuster les distributions	Distribution	Fenètre Modèle	Rérations Simulations	1000 · · · · · · · · · · · · · · · · · ·	Démarrer la A simulation av	malyses untées *	Parcours der résultats	V Définir les f	Ares Rapports	Permuter les fonctions Outri	Bibliotheo Utilitaires Aide *
B C D E F G H I J K Microsol agent/Parado State 1/2 (1/2)	B C D E F G H I J K Introduction feature data 2003 59:10 // m Introduction feature m Only Information (SIR Section feature feature feature flo) Introduction feature feature flo Introduction feature feature float Introduction feature float Intreat Intreat	AL	• 6	f.												
Résultats Sortie @RISK Interve aux 2009 09:09:18 Non Celuir Grayhoux Non Non Non Celuir Grayhoux Non Celuir Grayhoux Non Non Non Celuir Grayhoux Non Non Non	Microsofte Cellui (Suppose Men Cellui (Suppose Men Cellui (Suppose Coll Cellui (Suppose Men Cellui (Suppose Coll Cellui (Suppose <td></td> <td>P</td> <td>1917</td> <td>0</td> <td>0</td> <td></td> <td>F</td> <td>5</td> <td>6</td> <td></td> <td></td> <td>51</td> <td>1 11</td> <td></td> <td></td>		P	1917	0	0		F	5	6			51	1 11		
Robustesse de soudure (h) CB2 10,71 110,98 137,69 0,5660517 0,5660517 1,046512 0,6072819 1,04	bostinen de soudure (h) CB2 2000 BL/71 110,98 127,69 0,5660517 0,5660517 L040512 0,8672819 L4981	Non			Celule Grad	hique	Min	Mo	yenne	Мах	Cpk.		CpkUpper	CpkLower	Cp	2,006
		Robustesse de	ioudure (N)		C82	4	81,71	110	1,98	137,69	0,5660	\$17	0,5660517	1,048512	0,8072819	1,6983

Marqueurs graphiques Six Sigma

En présence d'une fonction de propriété **RiskSixSigma** dans une sortie, @RISK ajoute automatiquement des marqueurs représentatifs des valeurs LSI, LSS et Cible aux graphiques des résultats de simulation relatifs à la sortie.

L'affichage ou non de ces marqueurs se configure sous l'onglet **Marqueurs** de la boîte de dialogue **Options graphiques**. D'autres marqueurs peuvent aussi être ajoutés. La boîte de dialogue Options graphiques s'ouvre d'un clic droit sur un graphique ou d'un clic sur l'icône Options graphiques (2^e icône, en partant de la gauche, au bas de la fenêtre graphique).

🚹 Options graphiques		×
Titre Axe des X Axe des Y Courbe	s Légende Délimiteurs Marqueurs 🗸	()
✓ Afficher les marqueurs		
Redéfinir Nbre de courbes marquées	 Médiane Moyenne +/-1 écarts types 5% 95% X1 X2 X3 X4 ✓ LSI (Six Sigma) ✓ Cible (Six Sigma) ✓ Cible (Six Sigma) ✓ 	
Formatage 🔽 Automa	ique	
Couleur du texte		
Couleur d'arrière-plan		
Police	Tahoma 7 💦 🔀	
0	OK Annule	er 🛛

Études de cas

Exemple 1 – Conception d'expériences (DOE) : Catapulte 41
Exemple 2 – Conception d'expériences (DOE) : Soudage 47
Exemple 3 – Conception d'expériences (DOE) avec optimisation
Exemple 4 – DFSS : Circuit électrique 59
Exemple 5 – Lean Six Sigma : Analyse de processus de devis
Exemple 6 – DMAIC : Analyse de rendement global combiné 71
Exemple 7 – Sélection de fournisseur75
Exemple 8 – Taux d'échec DMAIC Six Sigma79
Exemple 9 – Taux d'échec DMAIC Six Sigma avec RiskTheo 83

Exemple 1 – Conception d'expériences (DOE) : Catapulte

Modèle type : Six Sigma DOE Catapulte.xls

Le modèle de la catapulte ou du trébuchet offre un exemple classique de démonstration de la **Conception d'expériences (DOE)**. Il illustre la simulation Monte Carlo et l'analyse de tolérance.

Imaginez que vous êtes fabricant de catapultes et que vos clients demandent une distance de lancer de boule standard de 25 mètres, plus ou moins 1 mètre. De nombreuses spécifications conceptuelles entrent en jeu dans la production de vos catapultes. Notamment :

- Angle
- Masse de la boule
- Distance tirée
- Constante du ressort

Entrée d'une distribution

Chaque facteur de conception contient une distribution de probabilités @RISK, pour représenter les différentes valeurs possibles de chacun. Les distributions de probabilités @RISK peuvent être entrées directement sous forme de formules, à l'aide de la commande **Insérer une fonction** de @RISK ou à travers l'icône **Définir les distributions** de la barre d'outils @RISK. Ainsi, une distribution uniforme représente les valeurs possibles de **Distance tirée**.

Entrée de propriétés RiskSixSigma

La sortie, **Distance du lancer**, contient une fonction de propriété RiskSixSigma qui définit la limite de spécification inférieure, la limite de spécification supérieure et la cible de cette distance. À l'image des entrées, une sortie @RISK peut être tapée directement dans la barre de formule ou définie dans la boîte de dialogue qui s'ouvre en réponse au bouton Ajouter une sortie de la barre d'outils @RISK.

Propriétés de sortie: C	33		×
Options Convergence	Six Sigma		
✓ Calculer les mesure Limites de spécification	es de capacité d	le cette sortie	
LSL	24		
USL	26		
Cible	25		
Autre			
🖵 U <u>t</u> iliser le décala	ge long terme		
Décalage	1,5		
Limite X supérieure/i	nférieure		
<u>E</u> carts types	1		
0		ОК	Annuler

Les mesures de capacité Cpk, Cpk-Supérieur, Cpk-Inférieur, Niveau Sigma et DPM sont calculées pour la catapulte, pour vous permettre de déterminer si elle est prête à la production.

34		
35	Résultats Six Sigma	
36	Cpk	0,1340
37	Cpk supérieur	0,2726
38	Cpk inférieur	0,1340
39	Niveau Sigma	0,5129
40	DPM	608000,00
41		

Représentation graphique des résultats

La distribution résultante de **Distance du lancer** indique que près de 60 % du temps, la distance dépasse les limites de spécification.

L'analyse de sensibilité identifie la distance tirée, suivie de la masse de la boule, comme les facteurs de conception les plus importants qui affectent la distance du lancer.

Ce modèle peut être utile à l'exploration de la théorie de **Taguchi ou de la conception paramétrique robuste.** Selon la théorie de Taguchi, deux types de variables définissent un système : celles dont les niveaux affectent la variation du processus et celles dont les niveaux ne l'affecte pas. L'objectif est de fixer les variables du premier type à un niveau apte à minimiser la variation totale du processus. Les variables sans effet sur la variation du processus servent à contrôler et/ou ajuster le processus.

Dans le modèle de la catapulte, on peut ajuster différents paramètres de conception (**Distance tirée** et **Masse de la boule**, notamment) pour essayer de minimiser la variation de la sortie **Distance du lancer**. Le dépassement des limites de spécification de 24 à 26 mètres dans une mesure de 60 % est signe que la conception laisse à désirer.

Exemple 2 – Conception d'expériences (DOE) : Soudage

Modèle type : Six Sigma DOE Soudage.xls

Supposons que vous analysiez un godet d'éclatement métallique fabriqué par soudage d'un disque sur un anneau (voir ci-dessous). Le produit sert de joint et de dispositif de sécurité, capable de soutenir la pression sous usage normal mais devant se séparer si la pression interne excède la limite de sécurité.

Le modèle met en rapport la robustesse de la soudure avec les facteurs de processus et de conception, modélise la variation de chaque facteur et prédit la performance du produit par rapport aux spécifications techniques. La modélisation d'une réponse en fonction de facteurs multiples peut souvent être accomplie à travers la génération d'une fonction statistiquement significative par conception expérimentale ou analyse de régression multiple.

Dans cet exemple, @RISK simule la variation au moyen de distributions normales pour chaque facteur. Les distributions @RISK gèrent les références aux cellules. Vous pouvez donc aisément configurer un modèle sous forme de tableau et le mettre à jour tout au long du cycle de développement du produit et du processus.

Les facteurs incertains sont :

Variables de conception

- Épaisseur du disque
- Épaisseur de la paroi du disque
- Longueur de la corne

Variables de processus

- Effort de soudage
- Temps de soudage
- Point déclic
- Amplitude
- Fréquence

48

Ajout de distributions

Pour ajouter une distribution à chaque facteur, il suffit de cliquer sur l'icône Définir les distributions de la barre d'outils @RISK. On sélectionne une distribution normale et on en définit les paramètres ou références de cellule, comme illustré ci-dessous. On pourrait aussi taper la formule directement dans la barre de formule Excel de chaque entrée. Par exemple, la cellule Effort de soudage contient la formule

=RiskNormal(D73;E73)

Sortie Six Sigma

La sortie, **Robustesse de soudure (N)** dans la section Performance Conception et Processus, contient une fonction de propriété RiskSixSigma avec indication des limites de spécification inférieure (LSI) et supérieure (LSS), ainsi que de la valeur Cible. Comme pour les distributions en entrée, la formule de sortie peut être tapée directement dans la cellule de sortie ou à travers la boîte de dialogue Ajouter une sortie. La formule serait

=*RiskOutput*("*Robustesse de soudure* (*N*)";;;*RiskSixSigma*(*D82*;*E82*;105;0;1))+ [*calcul mathématique*] La boîte de dialogue **Ajouter/Modifier une sortie** se présente comme suit :

@RISK -	Ajouter/Modifier une s	ortie: Cellule C82	X
<u>N</u> om:	Robustesse de soudure	: (N)	f#
0	Supprimer	ОК	Annuler

Un clic sur le bouton de propriétés (fx) ouvre la boîte de dialogue **Propriétés de sortie**, onglet Six Sigma à l'avant-plan. Les propriétés LSI, LSS, Cible et autres propriétés Six Sigma de la sortie se définissent ici. Elles servent au calcul des statistiques Six Sigma.

Propriétés de sortie: C8	2		×
Options Convergence	Six Sigma		
✓ Calculer les mesure Limites de spécification	s de capacité c	le cette sortie	
LSL	85		
<u>U</u> SL	125		
Cįble	105		
Autre			
🔲 Utiliser le décalaç	ge long terme		
<u>D</u> écalage	1,5		
Limite X supérieure/in	nférieure		
<u>E</u> carts types	1		
0		ок	Annuler

Résultats de la simulation

Après exécution de la simulation, les statistiques Six Sigma ont été générées à l'aide des fonctions @RISK Six Sigma pour Cpk-supérieur, Cpk-inférieur, Cpk et Défauts PPM (ou DPM). Les fonctions statistiques @RISK standard (telles que RiskMean) ont aussi été utilisées.

19											
80	Performance Conception et Processus										
81			LSI	LSS	Moyenne	Éc.type					
82	Robustesse de soudure (N)	110,96	85	125	111,00	8,48					
83	Cpk supérieur	0,55									
84	Cpk inférieur	1,02									
85	Cpk	0,55			Coût et volume						
86	Défauts PPM	58 000	Coût pièce	e :	0,28€	chacune					
87	Coût de défectuosité annuel	20 300 €	Volume an	nnuel :	1,25	MM					
88											
89											

La distribution de sortie @RISK affiche la performance attendue en fonction de la variation de l'entrée de conception et processus et marque les LSI, LSS et Cible. On accède facilement aux statistiques de sortie, grâce aux fonctionnalités de rapport ou à travers les fonctions @RISK.

L'analyse de sensibilité @RISK indique clairement que les paramètres Temps de soudage et Amplitude régissent la variation de la robustesse de la soudure.

Les étapes suivantes de ce problème pourraient inclure deux options : l'ingénieur peut essayer de réduire ou de mieux contrôler la variation au niveau du Temps de soudage et de l'Amplitude, ou il peut recourir à RISKOptimizer pour identifier les cibles de processus et conception optimales pour maximiser le rendement et réduire les coûts de chute.

Exemple 3 – Conception d'expériences (DOE) avec optimisation

Modèle type : Six Sigma DOE Optimisation.xls

Ce modèle démontre l'emploi de RISKOptimizer dans la conception expérimentale. RISKOptimizer combine la simulation Monte Carlo avec l'optimisation par algorithmes génétiques. Fort de ces deux techniques, RISKOptimizer peut résoudre de manière unique les problèmes d'optimisation complexes sujets à l'incertitude.

RISKOptimizer permet de maximiser une valeur cible, de la minimiser ou de s'en approcher pour une sortie donnée du modèle. Pour atteindre son but, RISKOptimizer essaie de nombreuses combinaisons distinctes d'entrées contrôlables spécifiées. Chaque combinaison est appelée « solution » et le groupe total de solutions essayées représente la « population ». La « mutation » désigne le processus d'essai aléatoire de nouvelles solutions indépendantes des essais précédents. L'optimisation par RISKOptimizer peut aussi être soumise à certaines contraintes définies.

Pour les facteurs incertains incontrôlables du modèle, on définit des fonctions de distribution de probabilités @RISK. Pour chaque combinaison itérative d'entrées, RISKOptimizer exécute aussi une simulation Monte Carlo, par échantillonnage de ces fonctions @RISK et enregistrement de la sortie obtenue pour l'itération. RISKOptimizer peut exécuter des milliers d'itérations, en vue de produire la meilleure réponse possible. Parce qu'il tient compte de l'incertitude, RISKOptimizer est bien plus précis que les programmes d'optimisation standard.

Dans cet exemple, comme dans le précédent, la pièce à l'étude est un godet d'éclatement métallique fabriqué par soudage d'un disque sur un anneau. Le produit sert de joint et de dispositif de sécurité, capable de soutenir la pression sous usage normal mais devant se séparer si la pression interne excède la limite de sécurité.

Le modèle met en rapport la robustesse de la soudure avec les facteurs de processus et de conception, modélise la variation de chaque facteur et prédit la performance du produit. RISKOptimizer a été utilisé pour rechercher la combinaison optimale de paramètres de processus et de valeurs de conception nominales afin de minimiser les coûts de chute, désignés sous **Coût de défectuosité annuel** dans le modèle. Il s'agit, en somme, de maximiser le rendement. RISKOptimizer doit ajuster les variables de processus et de conception suivantes :

Variables de conception

- Épaisseur du disque
- Épaisseur de la paroi du disque
- Longueur de la corne

Variables de processus

- Effort de soudage
- Temps de soudage
- Point déclic
- Amplitude
- Fréquence

Le but est de minimiser la sortie Coût de défectuosité annuel.

		Lonners		n Animage ga	DA READ	pameri	0.07210	Cardon cardone	ITOMAS CONT	100
Apouter Inserer une Définir les tions une sorbe fonction · correlations	Ajuster les distributions -	Distribution	Fenètre Modele	Simulation: 1	Démairer la simulation	Anatyses avancées •	Persoyati des resultats	Y Definition fittee	Rapports Permuter les Excel Tonctions	P Units
AL - C -			1		Million .			estimats.	499	in .
B	C	D	E	F	G	н	1		K L	M
	Fasteurs	4	ation			1				
	Facteurs	de conce	puon	Plage variable de	conception	- E				
Paramètre	Distribution	Nominale	Éc.type	Min	Max					
Épaisseur du disque (mm)	2.13219411	2,13219411	0.05	1	5	1				
Epaisseur de la paroi du disque (mm)	3,54684146	3,54684146	0,1	2	10					
Longueur de la come (mm)	162	162	1	100	200		Exp	pecimental Design	n Matrix	
							Anna Conta		Care County Clark County	
	Facteurs	de proces	SUS	10 11 2 50						
Paramètre	Distribution	Nominale	fetype	Plage	Max	1 8				
Effort de soudage (N)	432	432	10	400	1500	1 1				
Temps de soudage (ms)	0.5299058	0.5299058	0.04	0.1	1	I E				
Point déclic (ma)	0.49335918	0,49335918	0.04	0.1	1	1 6				
Amplitude (kHz)	22	22	1,2	15	40	1 1				
Fréquence (RMz)	20	20	0.75	20	30	L E				
A COLUMN A CONTROL OF	12-10-2		225.11		0.00			1000		
Perfo	rmance Co	nception e	t Proce	ssus			-			
Robustesse de soudure (N)	103.40	85	125	103.40	EC DO	10				
Cpk supérieur	#NOMBRE!			10000		Г				
Cpk inférieur	#NOMBRE!									
Cpk	"#NOMBRE!			Coût et volume						
Difauts PPM	0	Coût piêce :		4,28 € c	hacsine					
Coût de défectuosité annuel	*· e	Volume anno	1 lec	300 000						
		-								
		1								
		Résultati	nelleures	mulation J = 7754						

Barre d'outils RISKOptimizer

La barre d'outils RISKOptimizer ajoutée à Excel 2000-2003 se présente comme suit :

Sous Excel 2007, elle se présente comme suit :

Modèle d'optimisation

Un clic sur l'icône **Définition du modèle** ouvre la boîte de dialogue illustrée ci-dessous, pour la définition des cellules à ajuster, de la sortie et des contraintes éventuelles. Outre les entrées et sorties décrites plus haut, nous allons définir une contrainte, selon laquelle le point déclic doit toujours être inférieur ou égal au temps de soudage.

🕏 RISKOptimiz	er-Mod	lèle					×
But d'optimisation Cellule Statistique		Minimum =C71 Valeur					
Plages de cellules a	aj <u>u</u> stables					_	
Minimum		Plage		Maximum	Valeurs	Ajouter	r
Recette: Épaiss 1	eur du di: <=	sque =D49	<=	5	Quelcona	Supprin	ner
- Recetter Épaiss	eur de la	naroi du disque			quoiconqn		
2		-D20	/-	10	Ouelcopa		
- Decetter Longe	ur de la c	orpe	~-	10	Queiconiq		
100		-DE1	-	200	Entiors		
- Decetter Effort	de coude	-031	~-	200	Linders		
40	<=	=D57	<=	1500	Entiers	→ Group	e
Contraintes							
Description		Form	nule		Туре	Ajoute	r
				=\$D\$59<=\$D\$58	Ferr	me Mo <u>d</u> ifie	r
						Supprig	<u>n</u> er
0					ОК	Annu	ıler

Paramètres d'optimisation

On clique sur l'icône **Paramètres d'optimisation** pour ouvrir la boîte de dialogue illustrée ci-dessous, pour la configuration des conditions d'exécution de l'optimisation et des simulations.

🕏 RISKOptimizer - Paramètres d	optimisation			
Général Temps d'exécution Affichag	e Macros			
Paramètres d'optimisation				
Population		50		
Racine de nombres aléatoires		Automatique	•	
Echantillonnage				
Typ <u>e</u> d'échantillonnage	Hypercube latin		•	
🔽 Utiliser la même racine de nombres	aléatoires à chaqi	ue simulation		
En l'absence de simulation, les distributio	ons renvoient			
🔘 <u>V</u> aleurs aléatoires (Monte Carlo)				
Valeurs statiques	Valeurs probable:	s	•	
			ОК	Annuler

Exécuter l'optimisation

Au démarrage de l'optimisation, la fenêtre de **progression RISKOptimizer** s'ouvre et affiche un état récapitulatif de l'analyse.

Progression RISKOptimizer					
Itération :	445 / 1000				
Simulation :	13				
Temps d'exécution :	00:00:28 / 00:03:00				
Valeur originale :	14124				
Meilleure valeur :	14124				
B					

L'icône loupe ouvre l'utilitaire Suivi RISKOptimizer, qui présente une information plus détaillée sur l'optimisation et les simulations exécutées. Le tableau ci-dessous indique les simulations exécutées et les meilleures valeurs obtenues.

L'onglet Synthèse affiche la valeur la **meilleure**, **originale** et la **dernière** calculée, ainsi que les paramètres d'optimisation tels que les taux de croisement et de mutation.

Suivi RISKOptimizer										
Progression	Progression Synthèse Journal Population Diversité Options d'arrêt									
Valeurs des c	Valeurs des cellules ajustables									
	Simul. Résultat D49 D50 D51 D57									
Meilleure	11	14124	2,7231	2,2309	143		781			
Originale	1	19260	2,1322	3,5468	162		432			
Dernière	46	1284000	1,8742	9,3313	197		456			
Groupe af	e groupe de ceilui fiché	D49 (Épais	sseur du disqu	e}		•				
Taux de <u>c</u> r	oisement	•			• 0,50	000				
Taux de <u>m</u>	utation				• 0,10	000				

L'onglet Diversité représente visuellement les différentes cellules calculées et les différentes solutions possibles.

La simulation et l'optimisation de RISKOptimizer produisent efficacement une solution réduisant le Coût annuel de défectuosité à moins de 8 000 dollars.

Le recours à RISKOptimizer permet aux efforts d'amélioration de la qualité et de réduction des coûts d'économiser temps et ressources. Les étapes suivantes de ce problème consisteraient à valider le modèle et la solution optimisée par expérimentation.

Exemple 4 – DFSS : Circuit électrique

Modèle type : Six Sigma Circuit électrique.xls

Ce simple circuit c.c. comporte deux sources de tension – une indépendante et une dépendante – et deux résistances. La source indépendante spécifiée par l'ingénieur concepteur a une plage de puissance opérationnelle de 5 550 W +/- 300 W. Si le tirage sur la source indépendante n'est pas conforme à la spécification, le circuit sera défectueux. Les résultats de performance théorique indiquent clairement l'incapacité de performance sous défaillance d'un pourcentage des circuits aux deux extrémités, haute et basse, des limites. Les valeurs PNC identifient le pourcentage d'unités non-conformes attendu aux extrémités supérieure et inférieure de la spécification. Le modèle suit la logique décrite ci-dessous :

Le modèle calcule l'écart type de chaque composant en fonction de l'information connue et des hypothèses suivantes du modèle :

- 1) La moyenne des valeurs des composants est centrée dans les limites de tolérance.
- 2) Les valeurs de composant suivent une distribution normale. Remarquez que @RISK permet d'ajuster une distribution de probabilités à un ensemble de données ou de modéliser, au besoin, d'autres types de distributions de probabilités.

Une fonction de propriété RiskSixSigma, dans la cellule de sortie **PowerDEP**, définit la Limite supérieure, la Limite inférieure et la Cible utilisées pour les calculs de résultats Six Sigma. Les fonctions @RISK Six Sigma servent à calculer la capacité Cpk-Inférieure, Cpk-Supérieure, Cpk, Cp, DPM, PNC supérieur et PNC inférieur.

Analyse de sensibilité L'**analyse de sensibilité @RISK** identifie les variables en entrée responsables de la variation de la sortie. La sensibilité indique que les deux sources de tension sont les principaux facteurs de variation de la consommation. Cette information en main, les ingénieurs peuvent concentrer leur effort d'amélioration sur les sources de tension plutôt que sur les résistances.

Ce modèle peut servir à l'essai de différents composants et tolérances, les performances et rendements peuvent être comparés et la solution optimale peut être sélectionnée pour maximiser le rendement et réduire les coûts.

Exemple 5 – Lean Six Sigma : Analyse de processus de devis

Modèle type : Six Sigma Devis.xls

Dans les approches **Lean** comme **Six Sigma** de l'amélioration permanente, un aspect clé consiste à bien comprendre l'état actuel du processus à l'étude. L'approche commence par la phase de Cartographie de la chaîne de valeur d'une implémentation Lean ou par les phases Définir et Mesurer du processus Six Sigma DMAIC. Dans la plupart des cas, une ou plusieurs sessions servent à définir le processus et, après rapide évaluation, l'équipe passe à la résolution. Il est utile, pourtant, de prendre le temps de modéliser le processus et de démontrer que les données et les hypothèses avancées sont justes, surtout dans les circonstances suivantes :

- Le processus est essentiel (vital) au succès de l'entreprise.
- Le besoin d'amélioration du processus est nié.
- Les coûts de l'amélioration seront considérables.
- Les résultats de l'effort d'amélioration permanente seront probablement examinés de près.
- Le processus est sujet à l'**effet Hawthorne** : plus on l'étudie, plus il s'améliore.

La simulation peut prouver l'analyse initiale de la situation actuelle et présenter la véritable situation rencontrée par l'équipe responsable de l'analyse. Trois processus souvent très différents entrent en jeu : le processus que l'on croit exister, celui qu'on a documenté et celui qui existe véritablement, au jour le jour. Une simulation @RISK soigneusement élaborée peut documenter le processus réel et modéliser l'impact des améliorations à un stade ultérieur du cycle d'amélioration permanente. Le modèle est facile à construire.

Élaboration du modèle et collecte des données

Cet exemple repose sur le schéma du processus de devis estimatif interne d'une organisation. Il est tiré d'une situation d'entreprise réelle. Plusieurs outils permettent de représenter graphiquement le processus. Nous avons choisi le tableau de type **couloir d'activité**.

Le processus de devis considéré comportait plus de 36 étapes individuelles impliquant 10 individus ou services. Un coup d'œil rapide a indiqué qu'il fallait jusqu'à quatre semaines pour produire un devis, même si, pour les situations critiques, le processus pouvait être expédié et le devis produit en moins d'une semaine. Les longs cycles d'élaboration des devis empêchaient l'entreprise d'offrir efficacement ses produits et services sur les marchés souvent lucratifs de l'urgence. Comme les devis pouvaient être expédiés et produits en un quart du temps, la direction pensait que le problème se trouvait au niveau du personnel plutôt que du processus. Les analystes soupçonnaient cependant le processus et avaient besoin d'un outil pour le prouver.

Le diagramme dressé, l'équipe s'est trouvée face à la question suivante : Combien de temps faut-il pour traiter un devis, du moment de la demande jusqu'à la soumission au service d'ingénierie ? Il s'agit ici de la première partie du processus : les données étaient relativement faciles à obtenir et les conclusions tirées ici pouvaient s'appliquer à l'ensemble du processus. Cette partie du processus de devis s'organise en quatre étapes. D'abord, les données sont collectées et saisies (étape A). Elles sont ensuite mises en file d'attente pour examen/révision par le Service clientèle (étape B). Les corrections et autres données sont apportées au formulaire et le numéro de suivi est affecté (étape C). Enfin, le dossier passe en file d'attente pour élaboration du devis par le service d'ingénierie (étape D).

L'équipe a élaboré un simple relevé de temps suivant l'évolution du dossier, et le temps passé, d'une étape à l'autre. L'analyse initiale des quatre étapes de cette portion du processus repose sur ces données.

Une simple distribution des données, dans le cas qui nous occupe, veut dire que les données suivent un courbe simple. Les distributions complexes se composent de plusieurs distributions distinctes et sont généralement plus difficiles à définir. Les données rassemblées par l'équipe sont des deux types.

@RISK peut identifier la distribution applicable aux données à travers le bouton Ajuster les distributions de la barre d'outils. Une distribution ajustée peut alors être définie comme fonction de distribution dans le tableur. Données dans Excel, on clique sur le bouton Ajuster les distributions et on suit les invites affichées à l'écran. @RISK analyse les données et en vérifie l'ajustement à une série de fonctions de distributions.

Élaboration des distributions et définition de la sortie

Pour les données de l'équipe au niveau de l'étape C (Examen), le résultat de l'ajustement de distribution est illustré ci-dessous. La distribution résultante a ensuite été introduite directement dans la cellule du tableur sous le titre « C-Révision » à l'aide du bouton Écrire dans une cellule. (L'équipe a sélectionné la distribution normale plutôt que celle légèrement mieux ajustée de Weibull car, pour ce petit ensemble de données, la différence entre les deux courbes était acceptable.)

L'équipe a procédé de même pour toutes les distributions, pour chacune des quatre étapes. Cela fait, elle a défini la durée totale des quatre étapes, A-D, comme sortie @RISK et exécuté la simulation.

Les résultats en sont révélateurs. La durée totale moyenne de traitement d'un devis était d'environ 1 700 minutes, soit plus de 24 heures. La durée variait entre 350 minutes (presque 6 heures) et plus de 48 heures.

La seule portion de temps à valeur ajoutée est l'étape d'Examen-Révision. Cette étape prenait en moyenne 35 minutes (entre 6 et 64 minutes). L'observation a été présentée aux intéressés et, bien qu'étonnée, la direction en a convenu.
Statistiques relatives aux résultats de la simulation

@RISK a également permis à l'équipe de produire des statistiques élémentaires interactives avec la cellule de sortie. Elle désirait par exemple ajouter les valeurs de moyenne, maximum, minimum et d'écart type de la cellule de sortie Durée totale à un tableau du tableur. Dans le menu **Insérer une fonction** de @RISK, elle a donc sélectionné **Résultat de simulation** dans la section Statistiques, avec **RiskMean** comme fonction et la cellule de sortie Durée totale comme argument. À chaque exécution de la simulation, cette cellule s'actualise ainsi suivant le temps total moyen.

L'équipe a répété l'opération pour les sélections de maximum, minimum et écart type.

L'équipe a ensuite décidé d'ajouter l'analyse Cpk de la cellule de sortie à travers les fonctions @RISK Six Sigma. Dans la cellule de sortie Durée totale, elle a entré une fonction **RiskSixSigma**, dans laquelle :

- une cellule de référence identifie la cellule en-tête où le nom de la sortie est pris,
- une référence de cellule identifie la **limite de spécification inférieure** du résultat attendu,
- une référence de cellule identifie la **limite de spécification supérieure** du résultat attendu,
- une référence de cellule identifie la valeur **cible** du résultat attendu.

Entrée de fonctions Six Sigma La fonction RiskSixSigma a été configurée aisément dans la boîte de dialogue **Propriétés de sortie** (ouverte d'un clic sur l'icône de **propriétés de fonction** *fx* dans la boîte de dialogue **Ajouter/Modifier une sortie**).

tinir les a loutions un	Ajouter Insérer une C ne sortie fonction - o	Avister les Avister les Avister les Avister les Avister les Avister les	Distribution Artist	Invision Affichage Off Résistanti 1000 Simulations 1 Rite 202 2 2 2 2	Démarter la Analyses semulation axancées	Parcours des résultats	 Provinsi se filtres ✓ Ortiniar les filtres ▲ ▲ ▲ ▲ ▲ 	Rapports Permuter le Escel Tonchona	Dibsothé Utilitaires Aide -
K36	• (5	A RiskOutput(K)	15:::RiskStxSigma(x41;x40;x42;0;0])+G36+H36	5+136+/36		- Exercise		001
sortie sort sortie de 20 sava minu elle a Cem	e après la simulation calculés au moyen de de durée totale. mulation @RISK ind Options Convergen I Gakuler les mes. Lantes de spécificate	De plus, la moyenne, e fonctions statistiquer que que la durée moye de s Sagna, res de capacité de cette son n	es valeurs max et e @RISK LSS, LSI enne de traitement	min et l'écart type de la dur et Cible sont marquées sur d'un devis est d'environ 170 e 6 heures) à bien plus de d pe d'examen (C), requirant accomplir 35 minutes de tra miconsullinguittimpact com	le graphique de le graphique de 10 minutes, soit plus eux jours. L'équipe une moyenne de 35 avail à valeur ajoutée.				
Étape [temp en mi 2,2	La Un	0 1440 720	N N N	B - Attente de C -	Révision D - Attent constantas Collection (+8+C+O)[Plinates]	e de livraison	n Total Temps (A [Minute 1052	(+B+C+D) (%)	
3,4 8 10,6	Aute			A Stoumer	OK	Acculer			
3,4 8 10,6 14,5 10,4 2,6 9,3 2 4,5	Utiliser le déca Décolage Unite X supérieure Ecorts types	inge long terme 1,5 referieure 0	N	A Stoum	CK C33 (1)0(L51 (0)04 Cible (0,5	Acculer ar) r) jour)		1440 0 720	

La sortie ainsi configurée, il fallait que la simulation calcule les fonctions @RISK Six Sigma de **Cp**, **Cpk-Supérieur**, **Cpk-Inférieur et Cpk**. Pour ce faire, on insère les fonctions correctes (RiskCp, RiskCpkUpper, etc.) de **Six Sigma** dans la section Statistiques du menu **Insérer une fonction** de @RISK ou en les tapant dans la barre de formule. Elles se recalculent ainsi à chaque simulation.

	ccueil à	= mention	Misz en page	Parmules	Données	Se: Sigma D Révision	Affichage	e de comp @RtSk	- [anishing	Moreself	Emil					
Definit let distribution	Ajouter to une sorte	fx Instremun fonction	Definir les correlations Madrie	Ajuster Jes distributions -	Distribution Artist	Fenètre Modèle	nutions 1 nutations 1	21	Dématrier la simulation	Analyses avancees	Parcours d résultats		inthèse étimir les filtre SJ 🐨 🖘 fs	Rapports	Permuter les tenctions Out	Dissothèqu P Utilitaires * Aide *
50	HHE	• (* *	🗸 🖌 =Ri	skCpkLower(K36)											
	G		н	1.		1	in the second	. К			2	M.	N	0	P C	R
					LSS (1 j LSI (0 jo Cible (0,	our) our) 5 jour)			14	0						
Résult	ats de la s	imulation	1011-				Argumer	nts de la f	onction						2	×
	Moyenne Max Mir Écart type	1	726 766 186 56		Cp Cpk infé Cpk sup Cpk	irieur érieur		Source des param.	données a n* sin _6-sigma	24		18 18	- 2011,25 -	2533		
							Calcule IIn	dce de cape Sou	icté unlatére rce des doe	i basé sur la ndes repr étre	limite de spéci ésente la cellul calculée.	fication infr e, sortie ou	= 1,03499 neure. entrée pour la	1409 squelle la statio	tique 6-Signa c	loit .
							Résultat - Ade sur c	1 ette fonction						OK	Arruler	
	feufie1	-														

Représentation graphique de la sortie de simulation

À travers les graphiques de résultats @RISK et les marqueurs Six Sigma représentant les valeurs LSI, LSS et cible directement sur le graphique, la direction a été étonnée de voir qu'il fallait, en moyenne, plus d'une journée complète pour accomplir une tâche de 35 minutes. Les résultats de simulation pour la sortie Durée totale et pour les valeurs échantillonnées depuis la distribution en entrée de l'Étape C – Examen, sont présentés ci-dessous.

Par la simulation, l'équipe a pu documenter les flux et détails réels du processus lorsque les devis n'étaient pas expédiés. La direction a vu l'amélioration potentielle qui résulterait du suivi et de l'amélioration du processus tout entier. L'intérêt de la direction dès le début du projet s'est avéré essentiel à son succès à long terme.

À partir de ce modèle initial, l'équipe a élaboré le modèle complet du processus intégral. Ce modèle en main, elle a pu modéliser les efforts d'amélioration aux différentes étapes du projet et en vérifier les résultats positifs. La durée totale de génération de la simulation initiale et des résultats sous Excel aura été de moins d'une heure une fois les données entrées dans Excel.

Exemple 6 – DMAIC : Analyse de rendement global combiné

Modèle type : Six Sigma DMAIC Analyse RTY.xls

La méthode DMAIC – **Définir, Mesurer, Analyser, Améliorer et Contrôler –** sert à améliorer les produits ou les processus existants. Imaginez que vous êtes fabricant de bijoux de fantaisie et que vous recouvrez de l'argent peu onéreux de fines couches d'or. Vous importez vos matières premières et vos composants de Chine. Un petit nombre de composants est toujours défectueux, mais vous en ignorez la quantité exacte et le coût.

Vous avez recueilli des données sur le nombre de composants défectueux ou qui le deviennent à différents points du processus de fabrication. Au premier abord, il semble que les pièces défectueuses ne représentent pas un problème majeur. Au moins 99 % des composants sont acceptables à chaque étape du processus. L'effet combiné des pièces défectueuses donne cependant lieu à un gaspillage de 15 à 20 % des produits finis, soit 200 mille unités défectueuses par million produit. Si les matières premières représentent un coût de €0,50 l'unité, nous avons là un gaspillage de €100 mille avant main-d'œuvre, temps machine et autres frais.

Concesson Concesson <t< th=""><th>Discussion C D F D H L J K Descession Using 100000 1</th><th>A.1</th><th>Lindele</th><th></th><th></th><th></th><th>Simulation</th><th></th><th>Fei</th><th>dati (Carolari</th><th></th><th>Outra</th></t<>	Discussion C D F D H L J K Descession Using 100000 1	A.1	Lindele				Simulation		Fei	dati (Carolari		Outra
Dispetition Values Outside	Displanting / inspection Using / inspection U		в	C	D	E	F	0	H	1.00	J I	К
Decomp Distant 200 99% 4423 Baccoge Culture 1577.643 99% 5423 Baccoge Culture 1577.643 99% 5423 Baccoge Culture 1577.643 99% 5423 Baccoge Culture 1520.053 99% 6423 Baccoge Culture 1592.053 99% 64203 Datase Datase 1991.04205 64000 77000 68000 Extense Culture 1992.0120 48000 65000 100000 65000 100000 Extense Culture 1992.0120 4800 64000 77000 68000 100000<	Operating register Operati	10	ocessus	100	Unites	PIT	UPPM		1.34	1.22	CIDIP	
Becoppe Values 1977, 4(3) 95% 5146 Hetrysge Values 1977, 4(3) 95% 5146 Hetrysge Values 1995, 5(3) 95% 5146 Pincage Values 1992, 1(2) 95% 6140 Pincage Values 1992, 1(2) 95% 6430 Tetxox (% RTY et Total DPPH) 685 175 315,33 155000 215000 Tetxox (% RTY et Total DPPH) 685 175 315,33 155000 215000 10000 Disballinge Inspection 0 0 0 0 0 1 1 1 Disballinge Inspection 0	Decoge Vialue 1977, 413 010 0100 Hettrysge Vialues 1973, 413 95% 6100 Hettrysge Vialues 1973, 413 95% 6100 Placege Vialues 1930, 053 6100 6000 660 660<	0	Joanage / Inspection	Difata	225	995	14034		12000	15000	14000	
Default Official 0/2 <t< td=""><td>Defaults Defaults 192 294 5100 Plancage Oblights 1192 510 0441 0451 0451 0441 0451 0441 0451 0451 0441 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451</td><td>D</td><td>écoupe</td><td>Volume</td><td>15775 463</td><td>22.0</td><td>112.01</td><td></td><td>12.000</td><td>13000</td><td>14000</td><td></td></t<>	Defaults Defaults 192 294 5100 Plancage Oblights 1192 510 0441 0451 0451 0441 0451 0441 0451 0451 0441 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451 0451	D	écoupe	Volume	15775 463	22.0	112.01		12.000	13000	14000	
Nettoryage Volume 11995 093 One Ostation Pincage Volume 11995 093 One 0400 0400 0600 0600 0600 0600 0600 0600 0600 0600 0600 06000 0600 <t< td=""><td>Nettingage Values 1995,053 0 0 Pacage Utature 1193,013 0</td><td>-</td><td>iterape.</td><td>Diffacts</td><td>812</td><td>95%</td><td>61498</td><td>1 9</td><td>48000</td><td>56000</td><td>52000</td><td></td></t<>	Nettingage Values 1995,053 0 0 Pacage Utature 1193,013 0	-	iterape.	Diffacts	812	95%	61498	1 9	48000	56000	52000	
Default Differing Differing <thdiffering< th=""> <thdiffering< th=""> <thdif< td=""><td>Defaults Defaults 1018 (1%) 1915 (16) 05430 Pacage Udurs 1562 (19) 1912 (16) 1912 (16) 1910 (16)</td><td>No</td><td>ettoyage</td><td>Volume</td><td>14953.053</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdif<></thdiffering<></thdiffering<>	Defaults Defaults 1018 (1%) 1915 (16) 05430 Pacage Udurs 1562 (19) 1912 (16) 1912 (16) 1910 (16)	No	ettoyage	Volume	14953.053							
Piacage Volume 19/22 19/2 9/14 40/55 Tetow (P, RTY et Total EPPRo) 64/2 9/14 40/55 10/500 15000 12000 10000 Tetow (P, RTY et Total EPPRo) 64/2 10/5 10/5 10/5 15000 12000 10000 Tetow (P, RTY et Total EPPRo) 64/2 10/5	Pracessa Volume 19/20.112 99% 405% Letaux (% RTY et Total DPPR0 64% 175.315.3 3000 4200 10000 Letaux (% RTY et Total DPPR0 64% 175.315.3 3000 4200 10000 Debatinge / Impection 0 </td <td></td> <td></td> <td>Défauts</td> <td>1038 891</td> <td>93%</td> <td>69430</td> <td>1</td> <td>66000</td> <td>71000</td> <td>68500</td> <td></td>			Défauts	1038 891	93%	69430	1	66000	71000	68500	
Defaults Defaults 962 99% 4055 Tetace (% RTY et 7 total DPPM) 6.62 175 315.22 30000 42000 Tetace (% RTY et 7 total DPPM) 6.62 175 315.22 New Signal 20000 42000 Cabacity (% RTY et 7 total DPPM) 6.62 175 315.22 New Signal 165000 210000 100000 Debalinge / Impection Operationality (% RTY et 7 total DPPM) Operationality (% RTY et 7 total DPPM) Z Min Debalinge / Impection 0	Defaults Defaults 6/32 99% 44055 Lemax (% RTY er Total DPPR) 8/82 175 375,32 3000 2000 0000 Lemax (% RTY er Total DPPR) 8/82 175 375,32 165002 215002 100005 Lemax (% RTY er Total DPPR) 6/87 recessus (be precision (be precision) 10000 2000 100005 Leballager / Impection 0	PI	lacage	Volume	13924, 162			1 1	1.111		1.11.11	
Tetaux (* 8.1Y ei Total DPPa) BK T55 315.20 1 tetaux (* 8.1Y ei Total DPPa) BK 155 315.20 1 tetaux (* 8.1Y ei Total DPPa) BK 155 315.20 1 tetaux (* 8.1Y ei Total DPPa) BK 155 315.20 1 tetaux (* 8.1Y ei Total DPPA) BK 155 315.20 1 tetaux (* 8.1Y ei Total DPPA) BK 155 315.20 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 8.1Y ei Total DPPA) BK BK 1 tetaux (* 10.1 tetaux (* 10.	Decessor (k RTY et Total DPPM) LKK 175 315.20 15500 215000 Processor (c) Cpk Capacitis Cpk Infinite Decessor (c) Decesor (c) Decessor (c) <td< td=""><td></td><td></td><td>Défauts</td><td>562</td><td>96%</td><td>40353</td><td>1</td><td>38000</td><td>42000</td><td>40000</td><td></td></td<>			Défauts	562	96%	40353	1	38000	42000	40000	
Tetrava (b, RTY et Total DPPM) 4% 175 315.32 155001 215000 100003 Interact (b, RTY et Total DPPM) 6% 175 315.32 155001 216000 100003 Interact (b, RTY et Total DPPM) 0<0	Endmark N. RTY et Total DPPBD ARS. 175 315.32 155000 215000 100005 Debullage / Impection Cpk Cepacitie Cpk Infiniterer Cpk support et al. Immersion Zinfiriar Z Minimus Debullage / Impection 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1.</td><td></td><td></td><td></td><td>(* 1) () () ()</td><td></td></td<>						1.				(* 1) () () ()	
Decessor Cp Cpk Capacitie (cpk capacitie) Cpk inferieur Cpk superieur Niveau Signa de processor (cpk superieur) Decessor (cpk superieur) Zuliferieur Zuliferieur <td>Deballage / Impection Demonstration Cpk Capacitie Cpk Infifteeur Cpk regeterent in memolodie Zaugierteeur Z Min Deballage / Impection 0<td>Te</td><td>Alaux (% RTY et Total DPF</td><td>PM)</td><td></td><td>84%</td><td>175 315,32</td><td>1</td><td>155000</td><td>215000</td><td>180000</td><td>8</td></td>	Deballage / Impection Demonstration Cpk Capacitie Cpk Infifteeur Cpk regeterent in memolodie Zaugierteeur Z Min Deballage / Impection 0 <td>Te</td> <td>Alaux (% RTY et Total DPF</td> <td>PM)</td> <td></td> <td>84%</td> <td>175 315,32</td> <td>1</td> <td>155000</td> <td>215000</td> <td>180000</td> <td>8</td>	Te	Alaux (% RTY et Total DPF	PM)		84%	175 315,32	1	155000	215000	180000	8
Openciestan Cp Cpt Capacitie (cpt capacitie) Cpt inferieur (cpt inferieur) Openciestan Cpt (cpt inferieur) Z superieur) Z superieur) Debalinge / Impection 0	Deballage / Inspection Decrement Cpl Capacital Defection Cpl Inferior Departmented (grapproximation) Z Inferior Z supprime Z Min 04-coops 0 </th <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Niveau Sigma</th> <th></th> <th></th> <th>_</th> <th>i i i</th>	-						Niveau Sigma			_	i i i
December 2000 Openational Cp & de processos Cp & Interiour Capa Interiour Zandaritur Zandaritur <thzandaritur< th=""> <thzandaritur< th=""></thzandaritur<></thzandaritur<>	Debalinge / Impection Operation Operation <th></th> <th></th> <th></th> <th>Cpk Capacité</th> <th></th> <th></th> <th>de processus (par méthode d'approximatio</th> <th></th> <th></th> <th></th> <th></th>				Cpk Capacité			de processus (par méthode d'approximatio				
Debalage / Inspection 1 0 1 0 2 3 1 Decorps 0<	Debalage / Impection 1 0 1 0 2 1 1 0 Decorpt 0 </th <th></th> <th></th> <th>Processus Cp</th> <th>de processus</th> <th>Cpk inférieur</th> <th>Cpk supérieur</th> <th>n normale)</th> <th>Zintérieur</th> <th>2-supérieur</th> <th>Z Min</th> <th></th>			Processus Cp	de processus	Cpk inférieur	Cpk supérieur	n normale)	Zintérieur	2-supérieur	Z Min	
Decoge 0 <td>Decoge 0<td>D</td><td>iballage / Inspection</td><td>10-000 to 10-000</td><td>(</td><td></td><td>1</td><td></td><td>3</td><td>1</td><td>1</td><td></td></td>	Decoge 0 <td>D</td> <td>iballage / Inspection</td> <td>10-000 to 10-000</td> <td>(</td> <td></td> <td>1</td> <td></td> <td>3</td> <td>1</td> <td>1</td> <td></td>	D	iballage / Inspection	10-000 to 10-000	(1		3	1	1	
Hettorsgac 0 0 0 0 1 1 0 0 Placage 0	Nettoryspic O O O I I O O Plackage O	D	scoupe) () () (0	0	0	0	
Placage 0 </td <td>Placage 0<!--</td--><td>Ne</td><td>ettoyage</td><td></td><td>) (</td><td>) (</td><td>0 (</td><td>1</td><td>1</td><td>0</td><td>0</td><td></td></td>	Placage 0 </td <td>Ne</td> <td>ettoyage</td> <td></td> <td>) (</td> <td>) (</td> <td>0 (</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td></td>	Ne	ettoyage) () (0 (1	1	0	0	
Total 0.60 0.40 0.40 0.79 1.54 1.21 2.37 1.21 Debattage / Inspection Decompo Energyage Placage Disolation Disolation <thdisolation< th=""> Disolation <thdisolation< th=""> Disolation <thdisolation<< td=""><td>Energy 0.60 0.40 0.40 0.79 1.64 1.21 2.37 1.21 Deballage / Inspection Decrospe Hescage Placage Placage</td><td>PI</td><td>acage</td><td>1</td><td>) (</td><td>) (</td><td>) (</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td></td></thdisolation<<></thdisolation<></thdisolation<>	Energy 0.60 0.40 0.40 0.79 1.64 1.21 2.37 1.21 Deballage / Inspection Decrospe Hescage Placage	PI	acage	1) () () (0 0	0	0	0	
Donotest Donotest 229, 162243 901,9640194 962,893732 601,917763. 201,812243 901,9640194 962,893732 601,917763. 201,812369 675,958437 1980,614197 682,719763. 215,414497 631,609841 1008,74227 464,756309 224,519226 400,606844 1004,74227 464,756309 225,959231 804,718184 1022,90295 510,709001 201,912949 808,478119 1022,90295 510,709001 201,912947 808,478119 1027,91292 510,709001 214,44497 907,5231153 1000,29815 551,709001 224,813033 540,412312 1002,29815 547,700577 224,412101 907,5231153 1000,29815 547,700577 225,9061911 1111,11544 907,593125 123,91417 225,9061911 1111,11544 907,59315 542,62535 225,9061911 1111,11544 907,59315 543,62535 225,9061911 1111,11544 907,59315 543,62535	Doumles Doumles 228. H22343 907.564/374 982.973/32 601.97766.3 238. 151056 617.564/37 1000.8114/9 982.973/32 601.97766.3 238. 151056 617.564/37 1000.8114/9 1000.8114/9 1001.8114/9 238. 151056 617.564/37 1000.8114/9 1000.8114/9 1001.8114/9 234. 597056 407.564/31 1001.8114/9 101.7714/3 101.2014/9 246. 597028 440.0566644 1001.7714/34 571.05179/82 101.2016/9 266. 566201 84.716418 1024.50266 571.59179/82 101.2016/9 266. 546201 84.716718 1022.50565 567.200577 24.8173155 566.40213322 1003.31666 544.2924333 211.177775 896.5622741 1123.10566 542.264231 211.111.11584 567.59179 256.562381 616.5029689 1461.10119 526.951719 105.264291 225.59181 256.60291 506.5029689 1061.502964 105.552961 226.59181 226.59181 256.60291 506.50296	To	,tal	0,60	0,40	0,40	0,79	1,54	1,21	2,37	1,21	
System System System 254 5125 <	204 492.541 490 597.7463 204 492.7423 490 597.7463 204 492.7425 490.7425 447.7453 204 442.6467 403 500.6464 205 442.6467 403 500.6464 225 542.54627 402.566644 402.647264 226 542.50286 644 72.64726 226 550.5208 641.7741834 1022.402065 226 550.5208 641.7741834 1022.402065 226 550.5101 100.666474 610.015421 226 510.711 602.666474 610.015421 228 510.7175 896.565212 100.310560 241.517515 560.6111 101.55217 255.506111 111.11544 957.594217 225.506111 111.11544 957.594217 225.506111 111.11544 957.594217 225.506111 111.11544 957.594217 225.506111 1111.11544 957.594121	D	eballage / Inspection	Données	Nettoyage	Placage	1					
201.375985 675.568437 1050.61149 753.759812 215.445465 037.6059611 1007.42124 144.70509 224.579230 400.696644 1007.41237 447.75509 225.552201 400.696644 1007.41237 447.75509 226.552201 441.76519 1017.75629 101.75609 226.552201 441.75519 101.756201 101.756201 226.552201 441.75519 101.256201 101.756201 226.451231 1052.66674 451.055420 101.55621 226.45131 1052.66674 451.055421 101.55621 226.45131 1052.66674 451.055421 101.55621 226.45131 1052.66674 451.055421 101.55621 226.450512 102.95751 102.29575 544.70571 226.656572 766.710715 1057.552027 431.369111 226.4626301 1766.5259680 1464.51118 453.5519 226.4627631 1766.551915 155.552420 155.5519 226.4627631 176.551915 155.552420	2x3 4579695 475 568437 1050 51497 424.779192 2x4 547967 431 5005742 108,74251 108,74251 108,74251 201 2x4 579528 400,566644 1005,41237 447,75509 2x5 579528 400,566644 1005,41237 447,75509 2x2 579797 422 5005131 1052 5005 101,20051 102 2x2 579797 422 5005131 1052 5005 411 513524 101 2x4 579577 500 500572 100,20055 5007 441 301117 2x5 567572 176,1017 500 500572 443 301117 2x5 567572 176,1017 500 500574 443 301117 2x5 567572 176,1017 500 50057 443 301117 2x5 567572 176,1017 500 500574 443 301117 2x5 567574 51,30264 500 500574 443 301117 2x5 567574 51,30264 500 500574 423 4005590 2x5 567574 51,3026 500574 500774 500574 500574 500574 500574 500574 500774 5005574507 500574 500574 50	21	6 1622343	901 9540194	962 8937382	601.9177653	1					
214.544967 031.609541 1008.74253 447.05069 226.599228 400.750644 1005.74275 647.75069 226.599238 641.745154 1025.4277 647.75069 226.599239 641.745154 97.057192 763.75709 228.519927 882.055111 102.66074 611.015421 228.5197071 822.0551131 102.66074 611.015421 228.5197071 822.0551131 102.66074 611.015421 228.5197071 822.0551131 102.66074 611.015421 228.5197151 540.015322 103.8104 642.7424331 221.17775 896.595121 1121.10540 642.7424331 225.90671611 1111.11544 957.915416 642.743519 225.9067651 716.710715 107.52027 443.61915 225.4027103 716.710715 107.52027 443.61915 225.4027103 716.7177 105.22462 457.915119 225.4027103 716.7177 105.22462 457.915119 225.4027103 716.71777 575.20274<	215.445467 201.5009541 1001.74251 447.05009 225.59228 440.76509 246.75009 245.99229 226.59228 641.748154 1022.4927 510.270000 226.59209 641.748154 1022.4927 510.270000 226.59701 682.09311 1002.69474 611.971542 228.59701 682.09311 1002.69474 611.9715421 248.411555 640.01112 1003.09474 611.9715421 248.411555 640.01112 1003.0111 642.64214 248.411555 640.01112 1003.0114 642.64214 248.411555 640.01112 1003.0114 642.64213 248.411555 640.01112 1003.0114 642.64213 259.506181 111.111.649 957.94414 642.64213 225.906191 101.957.9107 1005.752027 443.981117 225.906191 649.599468 1044.1112 502.641141 225.906191 649.599468 1045.11126 503.80429 225.906191 649.599468 105.512420 <	20	4 3575985	675 958437	1050.611497	624 7791612	1					
28.4599238 400.696844 100.6.491237 648.768069 28.595228 641.7611541 122.60565 591.709001 20.59527 648.7611541 122.60576 591.709001 20.59527 648.7611541 122.60576 591.709001 20.595627 182.605131 192.60576 591.709001 22.8179071 822.605131 192.605714 611.015621 25.401231 997.523153 100.229855 564.705677 22.8179071 196.505122 1121.10580 64.000519 22.9067101 1111.11564 957.59321 643.602505 22.9067011 1111.11564 957.59327 443.602505 22.9067011 1111.1154 957.59327 443.602515 22.9067011 1111.1154 957.59327 443.602515 22.9067011 196.59527 1766.71075 1075.50207 22.9067011 197.59207 453.801519 122.9111 22.9067011 197.59207 453.801519 122.9111 22.9067011 197.59207 197.59207	234.599298 400,6966844 1005,41237 648,750399 265,565228 647,74184 1024,50266 501,501500 266,165201 689,41644 1024,50266 501,501500 266,165201 689,41644 1024,50266 570,5017982 261,6440231 687,50175 1002,2815 567,5017982 244,617355 560,4013322 1093,31666 544,2242433 245,601311 111,11584 955,751421 443,562051 245,601311 111,11584 955,751421 443,562051 245,601311 111,11584 955,751421 443,562051 245,601311 111,11584 955,751421 443,562051 255,662091 666,5295699 1444,10119 520,651519 255,662091 696,5295699 1444,10119 520,651519 255,662091 696,5295699 1444,10119 520,651519 255,662091 696,5295699 1444,10119 520,651519 255,662091 695,5295699 1442,10119 520,651519 255,662091 695,5295699 1444,10119 520,651519 255,662091 691,52324 1095,52097 553,32420 255,662091 691,52324 1095,52097 553,32420 255,662091 691,523429 1453,52097 553,32420 255,662091 691,523429 1455,32097 553,32420 255,662091 691,523429 1455,32097 553,32420 255,662091 691,553429 1455,32747 553,32420 255,662091 691,553429 1455,33747 553,32420 1455,32747 553,32420 1455,32747 553,32420 1455,32747 553,35420 1455,3574 553,35747 553,35747 553,35747 553,35747 553,35747 553,35747 553,5	21	5 4454857	831,6089541	1088 748251	447.085089	1					
226.962280 641.748134 1022.402056 510.1209001 226.165601 808.476646 913.77342 573.0971922 228.179071 822.0651311 1002.660474 61.015421 129.4410121 907.251313 1002.861674 64.7105171 228.179071 827.0671313 1002.861674 64.7105171 228.17775 896.5962121 1123.10520 854.006578 225.0501111 1111.11644 957.9517304 64.7062035 226.9605172 766.710715 1087.520207 443.819117 229.4027160 764.810719 1095.51727 644.10118 229.4027160 764.517197 1095.51727 164.7207108 120.91775 966.920497 113.911454 1095.91914 120.9178 966.920497 1095.91174 1095.91174 120.91797 974.831979 1015.22020 443.8199 122.9402160 964.92049897 105.91240 105.915119 120.940291 976.915197 105.220420 105.915119	225 5552288 641,7241104 1022,802055 510,720000 225,555001 882,41064 913,773436 57,0971982 228,875971 822,005131 1052,64074 61,015521 248,401231 915,52131 1052,64074 61,015521 248,401231 915,52131 1022,64515 647,730571 248,401231 915,52131 1002,24615 647,730571 255,5051911 915,52121 1131,11550 643,730571 255,5051911 1111,11544 95,794178 643,662053 255,5051911 1111,11544 95,794179 109,51914 256,905191 645,529568 1441,319117 220,815151 056,22051 766,51216 109,51914 520,515151 056,22054 916,512915 105,52027 441,389117 225,94027503 766,512968 1446,1118 520,515151 056,22054 916,512915 105,52027 441,3891 223,3430953 104,349564 915,512420 92,341452 223,344,94525 106,32944	23	4,5399238	400,6966844	1005.431237	648,763609	1					
205 656601 888,41664 91,3773438 573,071982 228,817907 822,60511 105,60644 611,015621 216,401211 987,623115 105,6064 611,015621 216,401213 987,6231153 1002,20855 564,705677 228,013163 540,6023322 1093,8166 544,204233 221,17775 896,502121 1121,10560 644,006505 225,9061111 1111,11644 957,59424 643,6045055 224,005017 756,71015 107,520207 443,861505 225,906111 1111,11464 66,1463249 1111 225,906111 109,1520207 443,861505 1111 225,906111 109,1520207 443,861505 1111 225,906111 109,1520207 443,861519 1111,1520 225,906111 109,1520207 443,861519 1111,1520 225,906111 109,1520207 443,861519 1111,1520 225,906111 109,151747 105,517147 1111,1520 225,9061111 109,171747 109,51	205.165601 808.410648 913.7734306 572.017982 228.2132011 822.055131 1002.60647 611.0154221 216.440221 907.5231153 1002.208455 564.7300577 216.440221 907.5231153 1002.208455 564.7300577 224.513155 564.022143 100.51627 100.51627 225.0601511 1111.11564 905.75027 443.062035 226.0605727 760.71075 906.50214 443.062035 225.0605317 1005.120847 565.950209 443.061116 226.060527 760.71075 906.50244 56.95116 109.650528 100.530847 55.9561391 506.53081 109.650514 910.543385 101.533847 55.9564391 223.340505 100.4326564 965.543563 223.343063 223.444447 565.333627 55.916361 459.543482 23.3430563 100.4326564 965.550741 459.543482 23.343063 100.4326564 965.550741 459.2441452 23.4444472 569.3330241	23	6,5952288	841,7481834	1024,902695	510,1209003	1					
228.879071 822.6951311 1028.66074 611.015421 214.401221 647.2051351 1002.9861 564.705077 234.811315 504.0213322 1008.31696 564.720577 234.811315 504.0213322 1008.31696 564.224933 225.9061811 111.11564 957.95424 464.02035 225.9061817 111.11564 957.95424 464.02035 226.906191 111.11564 957.95424 464.02035 226.906191 1017.112077 1019.91176 464.745399 226.906191 664.20958 195.32420 195.15119 109.602014 95.013135 1015.2249 195.15119 109.602014 95.013135 1015.2240 195.15119	228,43795071 822,0953131 1925,265074 611,015421 244,441221 997,523151 1922,29455 647,290577 244,451231 997,52315 540,203455 547,290577 244,513155 540,021322 1098,31686 544,224231 255,005181 1011,115404 997,79442 444,820255 255,005181 1011,115404 997,79442 444,820255 255,005972 765,710775 1097,52027 441,301117 225,9420350 776,531270 1099,31764 657,4413,90117 225,9420350 916,532969 1446,10180 520,045159 225,9420350 916,532969 1446,10180 520,045159 225,9420350 916,532964 915,01312 157,53240 223,3439553 1044,25954 905,53027 423,2441452 223,3439553 1044,25954 905,53027 423,2441452 223,3439553 1044,25954 905,53027 423,2441452 223,3439553 1044,25954 905,53027 423,2441452 223,3439553 1054,25954 905,53027 423,2441452 223,343955 1054,25954 905,53027 423,2441452 223,343955 1054,25954 905,53027 423,2441452 223,343955 1054,25954 905,53027 423,2441452 223,343955 1054,25954 905,53027 452,2591452 223,343955 1054,25954 905,53027 452,2541452 223,343955 1054,25954 905,53077 423,2441452 223,343955 1054,25954 905,53077 423,2441452 223,343955 1054,25954 905,53077 423,244152 223,343955 1054,25954 905,53077 423,2441452 223,343955 1054,25954 905,53077 423,2441452 223,343955 1054,25954 905,53077 423,244152 223,343955 1054,25954 905,53077 423,244152 223,343954 1055,2597 423,244152 223,343954 1055,2597 423,244152 223,343954 1055,2597 423,244152 223,343954 1055,2597 423,244152 223,343954 1055,2597 423,244152 223,343954 1055,2597 423,25455 223,343954 1055,2597 423,25455	20	15,1656081	888,410648	913,7734386	573,0917982	1					
216.40121 987.523153 1002.29855 564.705677 223.01355 504.023322 1903.39665 544.224433 223.17775 986.505121 1123.10566 544.224433 223.017775 986.505122 1123.10567 644.264503 225.9067101 1111.1564 995.19842 643.6645035 226.906702 766.71075 1097.520207 443.6615035 225.9067011 7166.710715 1097.520207 443.861503 225.9067011 766.710715 1097.520207 443.861503 225.9067011 696.5205901 696.5205917 109.51171 225.9067011 696.52059087 696.5205918 597.5491678 225.9067011 696.52059087 696.5117 595.6599668 598.4491678	216.44721 987.523153 1002.29855 564.730577 28.4131535 504.02322 1993.3166 44.2204333 221.177775 896.505272 1121.10360 634.005198 225.050737 776.57124 1122.10360 634.005191 226.050757 776.57124 1002.10360 634.005191 226.050757 776.57124 1002.10360 64.785019 109.620514 1003.57146 1005.57347 65.4785019 109.620514 910.543385 1015.52347 575.524201 223.5959505 120.1543355 1015.52347 575.524201 223.59595050 120.1543356 1015.52347 575.524201 223.8959505 120.154377 265.5835612 253.843612 223.840563 1004.295654 965.5702472 652.843612 223.8404537 563.330262 1065.52077 553.310262 223.8404537 263.8444472 1065.20777 553.81664	23	2,8379071	822,0953131	1052,650674	611,0135421	1					
214 071515 564.021322 1096.31666 54.202433 231 177775 066.05211 1723.05626 84.800516 231 177775 066.05211 1723.05626 84.800516 225.090572 796.710715 097.530207 443.309117 225.4005703 756.51247 709.319716 645.745309 225.4027100 756.51247 709.519716 645.745309 226.402703 756.51247 709.519716 645.745309 226.402710 97.9187146 647.745309 755.51240 249.612614 97.01531356 1015.52244 755.51240	224 6113155 50-00 201322 1095.331666 544.2924933 221 017775 695.05212 1123 10350 84.000519 225.050572 776.10175 007.53027 441.301117 225.050572 776.10175 007.53027 441.301117 225.050572 776.10175 007.53027 441.301117 225.050517 756.31217 1009.31716 520.651519 06620541 095.525689 1046.10180 520.651519 075.53027 109.53027 441.30112 520.651519 225.545293 720.15505 1015.23327 75.53240 225.545293 720.15505 1015.23327 420.241452	21	6,4401231	987,5231153	1002,298515	564,7300577	1					
231.17775 096.5052121 1123.105603 68.4005198 225.9601011 1111.15844 995.79542 643.6605055 226.9605172 766.710715 1067.520207 443.8615055 229.4627000 756.851247 1089.91114 643.1645.09 229.4627001 756.851247 1089.91114 643.1445.09 229.4627001 656.5259699 1048.10115 520.6915118 229.569069 656.5259649 1049.10115 520.691518 259.569069 279.14377 556.569649 566.424561	231.17775 896.5052121 1123.103603 684.0005198 225.0061517 11011.15649 995.798412 443.365115 226.0065072 766.710715 1067.520207 443.3651117 226.0050512 7766.710715 1067.520207 443.3651117 226.0050514 696.202949 1063.20297 1057.51012 226.0050514 696.202949 1051.20297 1052.51151 226.950504 696.202949 1051.20297 1055.951151 226.950504 696.202949 1053.20297 1055.951151 225.950505 1004.205654 985.702047 453.2451452 223.940595 1004.205654 985.702047 453.2451452 223.940595 1004.205654 985.702047 453.2451452 223.940595 1004.205654 985.702047 453.2451452 223.9404547 205.951320 4965.20297 453.2451452 223.940457 205.951320 4965.20297 453.2451452 223.940457 205.951320 4965.20297 453.2451452 223.940457 205.951320 495.25577 453.2451452 223.940457 205.951320 495.25577 453.2551452 223.940457 205.951452 223.94057 205.951452 223.94057 205.951452 223.94057 205.951452 223.94057 205.951452 223.94057 205.951452 223.94057 205.951452 223.940557 205.9514 223.94057	23	4,8131535	504,0213322	1098,381686	544,2924933	1					
225.9661911 1111.115644 99.756412 453.662035 255.966577 766,710715 1047.52027 443.3691117 223.462700 754.6312407 1095.91074 454.744539 255.962391 656.256989 10456.1015 520.845119 196.620214 910.633395 1016.52347 575.92403	225.506111 111.11564 995.79412 43.662035 25.065372 165.71075 1067.52027 44.369117 229.427250 754.512407 1089.91874 44.369117 229.4272501 965.22969 1446.10118 25.0691519 196.6202614 910.543385 1015.2347 575.53240 25.5965091 721.515477 265.560584 055.64563 223.343065 104.29654 985.702017 263.24514152 23.8444437 255.3334204 1065.23077 551.6554	23	1,177775	896,5052121	1128,103503	634,0005198	1					
225(965072 766,710715 1067,52007 441,991177 225(462700 774,637427 108)91174 642,743509 225(462700 665,529509 1044,10119 520,019119 225(46620 679) 665,529509 1044,10119 520,019119 205(46960 729 11477,755,56960 694,01	225.0950572 765.170176 1075.52027 441.391117 225.0950572 776.5171407 109.391174 462.745599 225.095091 605.295099 1046.17115 520.015119 225.950910 727 115477 205.505054 05545103 223.3950953 1004.295654 985.7020142 623.2411452 223.3450953 1004.295654 985.7020142 623.2411452 223.8410457 255.335024 1005.52007 255.811654	22	5,9061811	1111,115684	995,795412	643,6620535	1					
229,4027303 754,8312407 1089,918764 64,448389 255,966389 666,299689 1046,10198 520,6951519 196,520514 910,543385 1015,523447 575,532403 296,666466 799 1134177 055,670544 686,634786	227.4/27/03 75.4/312407 1009.918764 64.7/48309 225.96/2891 66.92/2969 1446.10118 22.6/815119 196.6/202014 910.5/31385 1015.23447 575.93240 225.340065 172.134577 205.56/50548 005.64/363 223.340065 104.29655 985.7020142 623.241192 224.8444437 255.33302024 1068.25097 551.05604	22	5,0905372	766,710715	1067,520207	441,3691117	1					
225, 995,891 695, 2299689 1046, 10118 520, 6915119 196, 6920514 910, 634,3385 1015, 5220,47 575, 932403 296, 5696065 729, 136217 556, 632047 575, 932403	225.9%2917 095.209489 1044.10139 526.0515179 105.00050 910.0512917 105.20248 105.000518 910.0512917 105.20248 223.3439653 1064.29654 985.702017 262.2441452 223.8439653 1064.29654 985.502017 262.2441452 224.8444472 55.3330224 1065.52007 255.81.6564	22	9,4027503	754,6312407	1089,918764	654,7485389	1					
199/6520514 910/6543305 1015/523847 575/532490 299/5569606 799/156217 926/5655634 508/5563	1199 (5220514 911) (542) 345 151 (522) 344 13 223 (545) 956 (572) (542) 171 (525) 550 (563) 563 563 563 223 (545) 955 (564) 26554 956 (720) 172 (523) 244 152 243, 444437 258 (535) 25224 1058 (520) 758 (516) 564	22	5,9963891	696,9299689	1046,101198	520,6915119	1					
229 NOTINON (29 1384717 328 NOS 3984 NOS 5843853	2(2);301900 (2);1061/1 2(2);000,000 300,504,505) 223;340953 1004;29554 905;7020412 623;2414152 234;844372 553;3560224 1056;520977 556;105694	19	19,6920514	910,6343385	1015,523847	575,932403	1					
000 0100650 K04 00554 005 200040 200 044450	224,944372 1094,23054 100,2097 558,05694 102 234,644372 558,3360224 1068,52097 556,05694	22	3,0033000	123,1364717	926,505,3654	000,0043063	1					
223,0402737 1004,270704 700,170244 12 023,044102 794.694.8727 2020,20204 4000 20007 2004 12004	£34,044431£ 300,3304£4 1000,0£0311 300,103034	22	3,3432333	100+,296504	505, r020412	023,2414152	1					

Il vous faut réduire le nombre d'unités défectueuses produites. Mais le processus est long et compliqué, et vous ne savez pas par où commencer. Avec @RISK, vous pouvez simuler de nombreuses issues différentes et identifier l'étape de fabrication la plus responsable du problème. Vous pouvez aussi obtenir les mesures de capacité de processus clés de chaque étape ainsi que du processus tout entier pour vous aider à améliorer la qualité et à réduire le gaspillage. De cette manière, @RISK sert aux phases de Mesure et d'Analyse de la méthode DMAIC. @RISK mesure l'état existant du processus (par les mesures de capacité) et analyse la manière dont il pourrait être amélioré (par l'analyse de sensibilité).

Ajustement de distributions

Au moyen des données recueillies du processus de fabrication, la fonction d'ajustement de distributions de @RISK définit les fonctions de distribution qui décrivent le nombre de pièces défectueuses à chaque étape du processus : **Déballage/Inspection, Découpe, Nettoyage et Placage.** La distribution ajustée pour la phase de placage (Weibull) est illustrée ci-dessous.

Les distributions ajustées sont ajoutées directement au modèle. La distribution du placage est illustrée ci-dessous.

Résultats de la simulation

Les **pièces défectueuses par million (DPPM)** à chaque étape, et pour le processus dans son ensemble, ont été définies comme sorties @RISK avec spécifications Six Sigma des valeurs Limite de spécification supérieure, Limite de spécification inférieure et Cible. Après simulation, diverses mesures Six Sigma ont été calculées pour chaque étape et pour le processus dans son ensemble.

	Processus Cp	Cpk Capacité de processus	Cpk inférieur	Cpk supérieur	Niveau Sigma de processus (par méthode d'approximatio n normale)	Z-inférieur	2-supérieur	Z Min
Déballage / Inspection	0,637703269	0,410955072	0,864451465	0,410955072	1,580466818	2,5933544	1,232865217	1,232865
Découpe	0,101729473	0,089036656	0,089036656	0,114422291	0,302855481	0,26710997	0,343266872	0,26711
Nettoyage	0,160407827	0,100056679	0,220758975	0,100056679	0,53883603	0,66227692	0,300170038	0,30017
Placage	0,111505282	0,091225218	0,131785345	0,091225218	0,314686099	0,39535604	0,273675654	0,273676
Total	0,596557497	0,404438418	0,404438418	0,788676575	1,542302919	1,21331525	2,366029725	1,213315

La distribution des issues DPPM est illustrée ci-dessous.

Enfin, l'analyse de sensibilité et un graphique tornade ont révélé que l'étape de **Découpe** était, globalement, la plus responsable des défauts de produit, en dépit du fait qu'une autre étape – Nettoyage – présente un moindre premier rendement FTY (moins de défauts). Même si le rendement FTY à la Découpe était plus élevé, le processus de Découpe en soi est moins constant et présente plus de variation que les autres processus.

Exemple 7 – Sélection de fournisseur

Modèle type : Six Sigma Sélection de fournisseur.xls

Imaginez que vous devez lancer un nouveau produit. Pendant la phase de mise en œuvre du lancement, votre entreprise prévoit la vente de 25 mille unités par mois. Un élément critique de votre produit est externalisé pour usinage de précision : ce composant doit répondre à de très précises spécifications pour être utilisé dans votre produit. En particulier, sa longueur doit être de 66,6 mm, avec une tolérance de +/- 1 mm seulement.

Trois fournisseurs produisent actuellement cet élément critique. Vous avez négocié un prix unitaire différent avec chacun de ces fournisseurs. La qualité du composant varie cependant d'un fournisseur à l'autre. Certains composants fournis ne sont pas conformes à la longueur spécifiée. Pour deux des fournisseurs, vous devez inspecter tous les composants à l'arrivée, pour vérifier leur conformité. Cette inspection ajoute des coûts de main-d'œuvre et de chute au processus. Le troisième fournisseur est homologué et garantit la conformité à 100 % de ses composants, éliminant le besoin d'inspection et les coûts de chute. Le prix unitaire de ce fournisseur est cependant le plus élevé des trois.

Vous aurez toujours besoin de plusieurs fournisseurs au cas où l'un d'entre eux ferait faillite. Vous voulez cependant savoir lequel représente le plus haut coût unitaire réel, de manière à élaborer une meilleure stratégie de sourçage de vos composants.

Modélisation de la longueur du composant

La longueur des composants de chaque fournisseur est décrite par des fonctions de distribution @RISK. Ces cellules sont également définies comme sorties @RISK avec fonctions RiskSixSigma pour nous permettre de calculer la valeur Cpm de chaque fournisseur ainsi que générer des graphiques de distribution des longueurs de composant avec marqueurs de spécification. Les fonctions RiskSixSigma contiennent les LSS, LSI et valeur Cible de 66,6 mm, sous tolérance limitée à +/- 1 mm.

Spécifications d	lu composant (mm)	
LSI	Cible	LSS
66,5	66,6	66,7

Ainsi, la longueur du composant du Fournisseur 1 est décrite par une distribution Pert, sous propriétés RiskSixSigma :

= RiskOutput(;;;RiskSixSigma(B30;D30;C30;0;6))+RiskPert(66,4;66,6;66,7)

Résultats de la simulation

Après la simulation, le Fournisseur 1 se révèle représenter le plus faible coût unitaire réel. La moyenne simulée du coût unitaire de chaque fournisseur est également indiquée, par la fonction RiskMean. Enfin, la valeur Cpm est calculée pour la longueur de composant de chaque fournisseur.

	Coût total réel des bons composants (unitaire)	Longueur Cpm	Moyenne du coût total réel unitaire
Fournisseur 1	€6,13	0.553	€6,16
Fournisseur 2	€6,75	0,472	€7,03
Fournisseur 3 (homologué)	€6,40	0,686	€6,40

La variation autour de la qualité du Fournisseur 1 est illustrée dans le graphique ci-dessous.

Vous disposez maintenant de l'information de coût et qualité qui vous permettra de définir une stratégie de commande plus rentable. L'étape suivante pourrait être d'analyser la manière de réduire davantage encore les coûts, en utilisant par exemple un événement Kaizen pour réduire les temps d'inspection interne.

Exemple 8 – Taux d'échec DMAIC Six Sigma

Modèle type : Six Sigma Échec DMAIC.xls

Cet exemple illustre un modèle de taux d'échec utile à la planification et au contrôle de qualité. Vous êtes fabricant et vous devez calculer le % probable de produits défectueux. Selon la méthode DMAIC (Définir, Mesurer, Analyser, Améliorer, Contrôler), il s'agit ici des phases Mesurer et Analyser, où l'on mesure l'état actuel de la qualité et on analyse les causes des problèmes ou des défauts.

Un produit est défectueux quand l'un quelconque de ses composants n'est pas conforme à la tolérance requise. Chaque composant est jugé satisfaisant dès le moment où une propriété de son état fini (sa largeur, par exemple) est conforme aux tolérances définies.

r tes Ajoute dions une sar	Insertion Mae en pag fr Mae en pag r Insérer une Définir les te fanction - carrétation Modèle	Aputter les distributions *	Données Distribution Artist	Revision Affichap Bérations Simulations Stre	an and a second an	Analyses Pa	Process des résultats Résultats	Rapports Pe	ermuter ins fanctions Outilis	
A1	- (c 5-									_
8	C	D	E	- F	G	н	- L.	J	K	1
Cette propri normale dar	est conforme aux tolé été de chaque, compos ns la colonne Échantilio s de propriété RiskSixSi	rances définies art fini (sa large n. Ces cellules o gma définissan	ur, par exemple) ont également été t les valeurs LSI, e qualité des con	est modélisée à l'ai é ajoutées comme s LSS et cible de cha nposants (voir le gri	de d'une distribution torties @RISK, avec tique composant. De tiphique du					
les fonction cette maniér Composant Après simul	w. nous pourons voir in 1 ci-dessous) et calculer ation, on peut aussi voir Moyenne (cible)	Econt type	I Six Sigma sur c PM statistiques S Echantillon	haque composant. Six Sigma de compo Tolérance : inférieure 6.50	Tolèrance :	OK 7	Taux d'échec (%)	Z Min	Fréquence d'échec	DP
les fonction cette manié Composant Après simul Composant 1	e, nous pourons voir la 1 ci-dessous) et calcules ation, on peut aussi voir Moyenne (cible) 10,0	les statistiques ries cote Z et Di Ecent type 0.20	Echantillon	haque composant. Six Sigma de compo Tolérance : inférieure (t, SI) 9,40	Tolérance : supérleure (LSS) 10.60	ОК 7 1	Taux d'échec (%) 0.20%	Z Min 3.00	Fréquence d'échec Un sur 501 échouera	DP 200
les fonction cette manié Composant Après simul Composant Composant	e, nous pourons voir la 1 ci-dessous) et calcules ation, on peut aussi voir Moyenne (cible) 10,0 5,0	Ecant type 0.20 0.05	Echantillon 10.00 5.00	Tolérance : inférieure (LSI) 9,40 4,83	Ssant et cumulés. Tolérance : supérleure (LSS) 10.60 5.15	OK 7	Taux d'échec (%) 0.20% 0.10%	Z Min 3.00	Fréquence d'échec Un sur 501 échouera Un sur 100 échouera	DP1 200 100
les fonction cette manié Composant Après simul Composant Composant Composant	e, nous pourons voir 1 1 ci-dessous) et calcules ation, on peut aussi voir Moyenne (cible) 10.0 5.0 8.0	Ecart type 0.20 0.06 0.10	Echantillon 10,00 5,00 8,00	Tolérance : inférieure (LSI) 9,40 4,63 7,60	Tolérance : suprireure (LSS) 10,60 5,15 8,30	ОК 7 1 1	Taux d'échec (%) 0,200% 0,100% 0,100%	Z Min 3.00 3.00	Fréquence d'échec Un sur 501 échouera Un sur 1000 échouera Un sur 1000 échouera	DP1 200 100 100
les fonction cette mariée Composant Après simul Composant Composant Composant	e, nous pourons voir 1 1 ci-dessous) et calcules ation, on peut aussi voir Moyenne (cible) 10.0 5.0 5.0 12.0	Ecart type 0.20 0.75	Echantillon 10.00 5.00 12.00	Toléfance : inférieure (LSI) 9,40 4,63 7,60 11,13	Tolérance : supérieure (LSS) 10.60 5.15 6.30 12.83	OK 7	Taux d'échec (%) 0,20% 0,10% 0,00%	Z Min 3.00 3.00 3.50	Fréquence d'échec Un sur 100 échours Un sur 1000 échours Autun échec	DP1 200 100
les fonction cette marié Composant Après simul Composant Composant Composant Composant	e. neur pourrons voir il t ci-dessoua) et calcules ation. on peut aussi voir Moyenne (cible) 10.0 5.0 8.0 12.0 6.0	Ecant type 0.20 0.06 0.10 0.25 0.10	Echantillon 10.00 5.00 0.00 12.00 6.00	Tolérance : inférieure (LSI) 9,40 9,40 4,63 7,60 11,13 5,70	Tolérance : supérfeure (L.S.S) 10.60 5.15 8.30 12.88 6.50	ОК 7 1 1 1	Taux d'échec (%) 0.200% 0.100% 0.000% 0.000%	Z.Min 3.00 3.00 3.00 3.60 2.69	Fréquence d'échec Un sur 501 échouera Un sur 1000 échouera Aucun échec Un sur 1000 échouera	DP1 200 100 100

Modélisation de la largeur du composant

Cette propriété de chaque composant fini (sa largeur, par exemple) est modélisée à l'aide d'une distribution normale dans la colonne Échantillon.

Échantillon	
10,00	
5,00	
8,00	
12,00	
6,00	

Ces cellules ont également été ajoutées comme sorties @RISK, avec les fonctions de propriété RiskSixSigma définissant les valeurs LSI, LSS et Cible de chaque composant. Formule de Composant1 :

=RiskOutput(;;;RiskSixSigma(F26;G26;C26;0;0))+RiskNormal(C26; D26)

De cette manière, nous pourrons voir les graphiques de qualité des composants et calculer les statistiques Six Sigma relatives à chaque composant.

Utilisation de la fonction RiskMean pour obtenir le taux d'échec

Le **taux d'échec** de composant et cumulé se calcule au moyen de la fonction **RiskMean** qui , étant une fonction @RISK statistique, n'est applicable qu'après exécution de la simulation. Après simulation, on peut aussi voir les cote Z et DPM statistiques Six Sigma de composant et cumulés.

Z Min	Fréquence d'échec	DPM
2,999060375	1 sur 334	3 000
2,99523275	1 sur 334	3 000
2,990852805	1 sur 334	3 000
3,492267357	1 sur 1 000	1 000
3,002125568	1 sur 1 000	1 000
2,945880756	1 sur 91	11 000

Le graphique des échantillons de Composant1 est illustré ci-dessous, avec marqueurs LSS, LSI et Cible.

Exemple 9 – Taux d'échec DMAIC Six Sigma avec RiskTheo

Modèle type : Six Sigma Echec DMAIC RiskTheo.xls

Cet exemple est une extension du modèle d'échec DMAIC utile à la planification et au contrôle de qualité. Il fait appel aux fonctions RiskTheo (en l'occurrence RiskTheoXtoP) pour déterminer le taux d'échec sans avoir à exécuter de simulation. Les fonctions RiskTheo renvoient les statistiques théoriques des distributions ou formules en entrée plutôt que celles issues des données d'une simulation.

Vous êtes fabricant et vous devez calculer le % probable de produits défectueux. Selon la méthode DMAIC (Définir, Mesurer, Analyser, Améliorer, Contrôler), il s'agit ici des phases Mesurer et Analyser, où l'on mesure l'état actuel de la qualité et on analyse les causes des problèmes ou des défauts.

Un produit est défectueux quand l'un quelconque de ses composants n'est pas conforme à la tolérance requise. Chaque composant est jugé satisfaisant dès le moment où une propriété de son état fini (sa largeur, par exemple) est conforme aux tolérances définies.

Moyenne (cble) Écant type Échanillon Tolérance : Indérieure (LSG) OH ? Taux apr On ? Composant 1 0 0.2 10 5.4 10.5 1 Composant 2 5 0.05 5 4.25 5.15 1	ux d'échec (%) Taux d'échec par près sim (%) RiskTheo (%) Z Min après	
Composant1 10 0.2 10 9,4 10,5 1 0 Composant2 5 0.05 5 4,825 5,15 1		sim DPM après
Composant2 5 0.05 5 4.825 5.15 1	0,400% 0,270% 3,0009358	16 4000
	0,100% 0,158% 3.00058820	13 1000
Composant3 8 0,1 8 7,6 8,3 1	0.200% 0.138% 2.99566174	2000
Composant4 12 0.25 12 11.125 12.875 1	0,100% 0,047% 3,49540419	1000
Compsianto 6 0,1 6 5,7 6,5 1	0,200% 0,135% 2,9994,30%	2000
105M 1	0.900% 0.746%	10000

Modélisation de la largeur du composant

Cette propriété de chaque composant fini (sa largeur, par exemple) est modélisée à l'aide d'une distribution normale dans la colonne Échantillon.

Échantillon
10,00
5,00
8,00
12,00
6,00

Ces cellules ont également été ajoutées comme sorties @RISK, avec les fonctions de propriété RiskSixSigma définissant les valeurs LSI, LSS et Cible de chaque composant. Formule de Composant1 :

=RiskOutput(;;;RiskSixSigma(F26;G26;C26;0;0))+RiskNormal(C26; D26)

De cette manière, nous pourrons voir les graphiques de qualité des composants et calculer les statistiques Six Sigma sur chaque composant si nous choisissons d'exécuter une simulation.

Utilisation de la fonction RiskTheoXtoP pour obtenir le taux d'échec

Le taux d'échec de composant et cumulé se calcule d'après la fonction **RiskTheoXtoP**, depuis les distributions normales de la colonne Échantillon. Le taux d'échec après simulation peut aussi être calculé par la fonction RiskMean si vous choisissez d'exécuter une simulation. On peut ainsi comparer le taux d'échec simulé avec celui théorique de RiskTheo.

Taux d'échec (%) après sim (%)	Taux d'échec par RiskTheo (%)
0,30%	0,270%
0,20%	0,158%
0,20%	0,138%
0,00%	0,047%
0,10%	0,135%
1%	

Après simulation, on peut aussi voir les cote Z et DPM statistiques Six Sigma de composant et cumulés.

Z Min après Sim	DPM après sim
2,998616548	3 000
2,997415317	2 000
2,997730848	2 000
3,49840855	0
3,004560454	1 000
3,146403741	8 000